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Jan Philipp Birmanns

Abstract

This paper explores the phenomenon of tracing drawings with epicycles in the two-, three-, and four-

dimensional space. The Fourier Transform [1] which is an essential part of today’s technology stands

at the center of this process. A closer look is taken at both the Discrete Fourier Transform [2] and

the Discrete Quaternion Fourier Transform. In order to share the visual intrigue of the transform

with readers, two pieces of software have been developed. These can be found at dft.birmanns.org

and dqft.birmanns.org. Through this research, rigorous proofs have been found to explain this

behaviour as well as a number of ways to improve the Inverse Discrete Fourier Transform. In order to

introduce readers to these findings they will also be familiarized with the underlying mathematical

groundwork. This, most importantly, includes complex numbers and quaternions. Thusfar, only

few resources exist that discuss epicycles and the Fourier Transform in this context and such detail.

This project was inspired by a video created by Grant Sanderson in which he presents epicycles that

trace various figures [3].
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1 INTRODUCTION Jan Philipp Birmanns

1 Introduction

The Fourier Transform is an essential part of modern technology. It is applied to many fields such

as communications, astronomy, geology, and optics [4]. Joseph Fourier, a French mathematician and

physcist, discovered that any function could be displayed as a combination of sine- and cosine-waves

in the early 1800s. This idea would eventually develop into its own field of Fourier-Analysis even

though Fourier had initially thought to describe the transfer of heat with it [5]. The transform is so

important in today’s world, as it allows data signals to be processed and filtered easily.

As this paper will show, a Fourier Transform can also be interpreted as a series of epicycles. This

term stems from ancient astronomy and was made famous through Ptolemy’s geocentric model. It

finds its origin centuries before this system [6], implying that the concept, although very distant from

the transform itself, predates most of modern mathematics. Since the discovery of the transform,

a range of alternate forms have been developed, such as the Discrete Fourier Transform [2] or the

Discrete Quaternion Fourier Transform [7]. These transforms are well-suited for the processing of

sets of data as will be done in the following sections.

Alongside this paper two pieces of software have been developed that demonstrate the visual

appeal that can attract those unfamiliar with the topic. They can be found on the websites

dft.birmanns.org and dqft.birmanns.org. The first matches the first half of this document

where the Discrete Fourier Transform and Inverse Discrete Fourier Transform are discussed. These

terms will henceforth be abbreviated as DFT and IDFT respectively. They match the conventional

understanding of an epicycle in a two-dimensional space. The second program demonstrates the

Discrete Quaternion Fourier Transform and Inverse Discrete Quaternion Fourier Transform which

correspond to epicycles in three- and four-dimensional space. These names will be shortened to

DQFT and IDQFT throughout this paper. Readers are recommended to experience the programms

before moving on to the theory discussed here. Extracts from these programs can also be viewed in

sections 8 and 13.

This paper is intended for students that are nearing the end of year twelve and have a general

interest in mathematics. For this reason the concept of complex numbers which are vital to this

project should be familiar to readers. Nonetheless, important aspects will be redefined as they are

utilized throughout the following sections. In order to discuss multi-dimensional drawings which

exceed the two-dimensional plane, the quaternion space will also be explored. While a fundamental

understanding of quaternions will be of use, it is not necessary to continue reading.

The body of this text can be divided into two similar halves along sections 8 and 9. The first half will

start off by defining the term ”epicycle” while the second will in turn introduce the quaternion space

to the reader. After this the two parts explain how to trace paths in a two- and three-dimensional

space accordingly. These sections are followed by proofs and explanations of the corresponding

transforms. The former part will additionally discuss methods to improve the Inverse Discrete

Fourier Transform. Both halves end by presenting the pieces of software that have been developed

to demonstrate the theory.
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2 EPICYCLES Jan Philipp Birmanns

2 Epicycles

The term “epicycle” does not find its origin in mathematics but stems from astronomy. It was first

used by Greek astronomer Apollonius of Perga during the third century BCE [6], making it older

than most of modern mathematics. He used the word to describe the motion of a planet that moves

on a circle which itself is being carried along the circumference of a larger circle, the deferent [8]. The

concept was made world-famous through Ptolemy’s Almagest. At this point it was still believed that

the Earth stood still at the center of the universe [6]. Thus, the irregular path taken by bodies such

as Mars had been a mystery for decades. Ptolemy found a solution to this problem by proposing

that such planets do not move on a regular circle but instead on an epicycle as in figure 1.

While this theory could hold true in the context of a geocentric model, it became obsolete when

the heliocentric model was introduced. The true reason for the motion are the varying speeds at

which bodies rotate around the sun. For example, whenever Earth passes Mars it seems as if the

red planet first changes its direction but then turns around once more to continue its original path.

This is only the case from the Earth’s point of view, in actuality Mars simply continues moving on

its usual elliptical path [9].

Earth Mars

Figure 1: a qualitative representation of the geocentric model

Nonetheless, Ptolemy’s model was highly accurate. The reason for this is that any smooth path can

be represented nearly perfectly through epicycles. This was indirectly discovered by Joseph Fourier

as a part of Fourier analysis in the early 1800s. He uncovered the so-called “Fourier Transform”

which is widely used today. It is based on the idea that any signal can be decomposed into a set of

sinosoids and was initially intended to model heat transfer [5]. Today it is most commonly utilized

in signal and thus sound processing to decompose signals [4]. The following chapters will step into

Ptolemy’s footsteps and make use of the property that epicycles can trace any arbitrary smooth path

in the context of the Fourier Transform. They are also often represented through chains of arrows

instead of many circles. An individual arrow connects the center of a circle to the next which is

moving on its circumference. As the outer circle moves relative to the center of the inner circle, the

arrow turns. A more precise approach to this interpretation will be discussed in section 4. Especially

in cases where there are many nested epicycles, this method allows a neater visualization.
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3 APPLYING THE FOURIER TRANSFORM TO DRAWINGS Jan Philipp Birmanns

3 Applying the Fourier Transform to Drawings

One of the prime issues that one faces when attempting to create drawings with the Fourier Trans-

form [1] is that its intended use is to approximate already existing functions. Thus, in order to

recreate a drawing with it, a function would first have to be found that connects the infinite amount

of points that form such a shape. This, however, is not achievable as the creation of such a function

and the gathering of such data would require an unreasonable amount of time. A solution to this

problem is the use of approximations. An example would be to represent a drawn line through a

sequence of points. These are determined by the position of a pencil or similar at every second

during which somebody is drawing this shape. These points are later connected to recreate the

original, as shown in figure 2. At a high enough sample rate and slow enough movement the original

line can be matched nearly perfectly.

200 300 400 500 600

150

200

250

300

x-axis

y
-a

x
is

Figure 2: an example of a drawing being approximated by a set of points

Since data points serve as an input rather than mathematical functions, the Fourier Transform no

longer applies. Instead, when dealing with individual points, the Discrete Fourier Transform [2] is

used:

X(k) =

N−1∑
n=0

xn · e−i2πkn
1
N .

Just using the DFT in R will, however, not suffice. Operating in R allows only one-dimensional

input. It is still possible to trace simple drawings or sets of data when the points are ordered so that

n = x of a point (x, y) as in figure 3.
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3 APPLYING THE FOURIER TRANSFORM TO DRAWINGS Jan Philipp Birmanns

pts. n xn
(1,1) 1 1
(2,3) 2 3
(3,2) 3 2
(4,0) 4 0
(5,1) 5 1

0 1 2 3 4 5

0

1

2

3

(1, 1)

(2, 3)
(3, 2)

(4, 0)

(5, 1)

x

y

Figure 3 & Table 1: an example set of points being traced by the DFT (& IDFT)

Unfortunately, as soon as the drawn shapes feature two points with the same x-value (such as in

loops) several issues come to light. In these cases there are multiple xn for the same n. Luckily,

a very practical trick to work around this problem is to expand the input to two dimensions: the

two-dimensional set C. C describes the set of all complex values which are commonly denoted as

”a+ bi” (in Cartesian form). A projection φ : R2 → C is then defined which converts a point (x, y)

to x+ yi. More complex shapes can then be traced as presented in figure 4:

pts. n xn
(1,4) 1 1+4i
(2,4.5) 2 2+4.5i
(4,4) 3 4+4i
(3.5,2) 4 3.5+2i
(3,1) 5 3+1i
(2,0.5) 6 2+0.5i
(1,2) 7 1+2i
(2,3) 8 2+3i

0 1 2 3 4

0

1

2

3

4

5

(1, 2)

(2, 3)

(1, 4)

(2, 4.5)

(4, 4)

(3, 1)

(3.5, 2)

(2, 0.5)

x

y

Figure 4 & Table 2: an example set of points being traced by the DFT (& IDFT)

Fortunately enough, the DFT is already capable of handling complex values [1] which means that it

can remain unchanged. Methods of handling the output of the DFT to receive this approximation

and a proof of the transform that applies to R and C will be discussed in section 5.
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4 Interpretation of the IDFT as a Set of Arrows

At the heart of the visualization of the Fourier Transform in a two-dimensional space lies the inter-

pretation of the Inverse Discrete Fourier Transform [2] as a set of arrows. This intially unintuitive

connection will be discussed in the following section. Commonly, the IDFT is expressed as

x(k) =
1

N

N−1∑
n=0

Xne
i2πnk 1

N .

As section 5 will discuss further, Xn describes complex constants which have already been collected,

using the Discrete Fourier Transform. These complex values are then multiplied with ei2πnkN
−1

and

divided by N to calculate the final point. To make the connection more explicit, the form of the

two factors that are being observed, ei2πnkN
−1

and Xn, are altered. While complex values of the

traditional form ”a + bi” are already sufficiently defined, an alternative notation exists. Figure 5

shows the geometrical interpretation of a point of form ”a + bi”. This structure is also referred to

as the Cartesian form. As figure 6 shows, a complex value can be defined through its distance and

angle to the origin as well. This alternative form is referred to as the Polar form.

0 1 2 3 4 5

0

1

2

3

4

5

a+ bi

a

b

Re

Im

Figure 5: the complex value 3 + 4i in the complex plane
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0 1 2 3 4 5

0

1

2

3

4

5

r

r(cos θ + i sin θ)

θ
Re

Im

Figure 6: the complex value 3 + 4i in the complex plane

Instead of seeing such values as points that are defined by the distance r and angle θ, they can be

understood as the tips of arrows of length r that have been turned by θ.

Similarly, the form of ei2πnkN
−1

can be changed. For this, Euler’s formula [10] is applied. The

equation states that eix = cosx+ i sinx and thus allows the following transformation:

ei2πnkN
−1

= cos (2πnkN−1) + i sin (2πnkN−1).

Now that the factors have been converted into more suitable forms, they can, once more, be com-

pared. The IDFT equals:

x(k) =
1

N

N−1∑
n=0

(rn(cos θn + i sin θn)) · (cos (2πnkN−1) + i sin (2πnkN−1)).

The two values can be multiplied which each other and return

x(k) =
1

N

N−1∑
n=0

rn((cos (θn) cos (ω)− sin (θn) sin (ω)) + i(cos (θn) sin (ω) + sin (θn) cos (ω)))

with ω = 2πnkN−1.

Making use of the trigonometric addition formulas [11], this can be simplified to

x(k) =
1

N

N−1∑
n=0

rn(cos (θn + ω) + i sin (θn + ω)) with ω = 2πnkN−1.

As shown, the value of the multiplication Xn · ei2πnkN
−1

is simply a complex number (in Polar

form) which in turn can be understood as an arrow of the length rn with the angle θn + 2πnkN−1.

Additionally, the fact that it is part of a sum implies that the entire IDFT can be understood as a

chain or series of arrows. Each one of them is connected to the previous through its base and the

following through its head.
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−5−4−3−2−1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

rn
θn + ω

Re

Im

Figure 7: an example of a single arrow determined by a summand of x(k)

Furthermore, the values of the angle and length of these arrows must be determined. The length

rn can easily be computed as rn = |Xn|. While the first element of the angle (θn) is simply

arctan (=Xn/<Xn), finding ω becomes more difficult. When k is set so that k ∈ N∪{0} and k ≤ N ,

it returns the original values x0, x1, x2, ..., depending on which k is selected. However, what happens

when k is not within those boundaries?

First, the outcome is considered when k > N . This would imply that k · N−1 > 1. An important

property of trigonometric functions is that (if f(x) is a trigonometric function) ∃a ∈ R : f(x) =

f(x−a). Generally, functions with this property are called periodic. When ω = 2πnkN−1 is plugged

into a single summand of x(k), it thus follows

cos(θn + 2πn
k

N
) + i sin(θn + 2πn

k

N
) = cos(θn + 2πn

k −N
N

) + i sin(θn + 2πn
k −N
N

).

This implies that once k > N , the IDFT returns to the beginning, creating an endless loop. Due

to all trigonometric functions having the range R, it is clear that the IDFT will create a continuous

path between every point xk : k ∈ N ∧ k ≤ N . This means that there are even values xk ∀k ∈ R.

Yet another important value in ω is n. It determines the frequency at which the arrow spins. There

exists one arrow of each whole number frequency between zero and N .
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5 The Magic Behind the Discrete Fourier Transform

The Inverse Discrete Fourier Transform [2], or IDFT in short, is the opposite of the DFT and

expresses every value x(k) and thus xn as follows:

x(k) =
1

N

N−1∑
n=0

Xne
i2πnk 1

N =
1

N
(X0e

i2π0k 1
N +X1e

i2π1k 1
N + · · ·+XN−1e

i2π(N−1)k 1
N ). (1)

One of the most important properties of the IDFT is that while the DFT has a domain of k ∈ N, it

has the range R. It also true that every set of points xn can be expressed through the IDFT, given

the correct selection of coefficients Xn in the formula. The values n, k, and N are already given by

the equation with N equaling the number of data points. This means that the goal of the DFT is

to filter out these Xn from a given data set. The following passage will try to demonstrate how the

DFT accomplishes this and to ultimately prove the validity of the DFT.

5.1 Proof of the DFT

As shown before, the DFT is equal to

N−1∑
n=0

xn · e−i2πkn
1
N . (2)

The equation of the IDFT (equation 1) can be inserted into the DFT (equation 2), as it simply

expresses the values xn in an alternative form:

N−1∑
n=0

(
1

N

N−1∑
m=0

Xme
i2πmn 1

N ) · e−i2πkn 1
N

=
1

N

N−1∑
n=0

(X0e
i2π0n 1

N +X1e
i2π1n 1

N + · · ·+Xke
i2πkn 1

N + · · ·+XN−1e
i2π(N−1)n 1

N ) · e−i2πkn 1
N .

The exponents cancel out for the single summand where m = k which thus equals Xk or N · Xk

once the values have been summed up. This still leaves behind a series of

Xme
i2πmn 1

N e−i2πnk
1
N = Xme

i2πn 1
N (m−k)

where m 6= k. These have to amount to zero for the equation to return Xk. To prove that this is in

fact true, one must take one more piece of information from the DFT. A few transformations show

that

N−1∑
n=0

(
1

N

N−1∑
m=0

Xme
i2πn(m−k) 1

N ) =
1

N

N−1∑
m=0

(

N−1∑
n=0

Xme
i2πn(m−k) 1

N ). (3)

This implies that one can also view a single Xme
i2πn(m−k) 1

N as n varies. Geometrically, one such

sum expresses movement along a circle of radius |Xn| in steps of 2πm−kN [3] which will henceforth be

denoted as α. To understand this interpretation, one should be aware of Euler’s formula [10] which

states eix = cosx+ i sinx.

As figure 8 demonstrates, the values Xme
nα will add up to zero as n moves from 0 to N − 1. This
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demonstrates that
∑N−1
n=0 Xme

inα = 0 for m 6= k. In this example Xm = 3 + 4i, (m − k) = 1, and

N = 8. The same can be done for k is picked so that m − k = 0. Such an example can be viewed

in figure 9. As α = 0, the different summands will equal the same value Xk for all n and add up to

N ·Xk. Thereby it has been shown that

1

N

N−1∑
m=0

(

N−1∑
n=0

Xme
i2πn(m−k) 1

N ) =
1

N

N−1∑
m=0

Xk = Xk.

which completes the more intuitive approach to proving the DFT.
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Figure 8: an example for different Xme
inα as n varies and α = 2πm−k

N
= 2π 1
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Figure 9: an example for different Xme
inα as n varies and α = 2πm−k

N
= 0

Additionally, there exists a more rigorous proof to achieve this last step. The inner sum of equation

3 is altered in the following way:

N−1∑
n=0

Xme
i2πn(m−k) 1

N = Xme
−i2πnk 1

N

N−1∑
n=0

ei2πnm
1
N

?
= 0.
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It has to be shown that the product does, in fact, equal zero when m 6= k. As three values are being

multiplied with each other, at least one of them has to equal zero for this to be true. Since this

argument has to be true for any Xm, the coefficent cannot be zero. The second factor, e−i2πnk
1
N ,

has to be larger than zero because for any value n in R, en > 0. This leaves the proof of

N−1∑
n=0

ei2πnm
1
N

?
= 0.

Since this is a geometric series of form
∑n
i=0 air

k, the geometric sum formula [11] can be applied. It

states that for any geometric series [11], its sum equals a0
1−rn
1−r . Additionally, Euler’s formula [10]

implies that ei2π0m
1
N = ei2πNm

1
N . This gives

N−1∑
n=0

ei2πnm
1
N =

N∑
n=1

ei2π(n−1)m
1
N =

N∑
n=1

1 · (ei2πm 1
N )n−1 = 1 · 1− (ei2πm

1
N )N

1− ei2πm 1
N

=
1− ei2πm

1− ei2πm 1
N

Euler’s formula also shows that ei2πm = cos(2πm) + i sin(2πm) = 1 if m ∈ Z. For the previous

equation, this implies

N−1∑
n=0

ei2πnm
1
N =

1− ei2πm

1− ei2πm 1
N

=
1− 1

1− ei2πm 1
N

= 0.

This new piece of information completes the last step of this proof. When applied to equation 3,

one receives

1

N

N−1∑
m=0

(

N−1∑
n=0

Xme
i2πn(m−k) 1

N ) =
1

N

N−1∑
m=0

(Xke
i2πn(k−k) 1

N ) =
1

N

N−1∑
m=0

(Xk · 1) = Xk.

Thereby, it has been rigorously shown that the Discrete Fourier Transform can filter out Xk for any

suitable k from a set of data.

5.2 Example

For the sake of clarity, the Discrete Fourier Transform will be performed on an example set of data.

For this four evenly spaced points on an ellipse have been chosen. The exact values are given in

table 3 and figure 10. From this set follows that N = 4.

pts. xn

(4.619,1.148) 4.619 + 1.148i
(-1.913,2.772) −1.913 + 2.772i
(-4.619,-1.148) −4.619− 1.148i
(1.913,-2.772) 1.913− 2.772i

−5 −4 −3 −2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

x

y

Figure 10 & Table 3: an example set of data
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In a first step the coefficient X0 is calculated. As the DFT states

X(0) =

3∑
n=0

xn · e−i2π0n
1
4 =

3∑
n=0

xn.

For the given values this equals

X(0) = (4.619 + 1.148i) + (−1.913 + 2.772i) + (−4.619− 1.148i) + (1.913− 2.772i) = 0.

Since X0 is the arrow of frequency zero, it represents the rigid point that the other moving arrows

will connect to. This allows the construction to be moved quite easily by just adjusting X0. It is

often not displayed in visualizations of the IDFT as epicycles or a series of arrows since it does not

move. The value of X0 mathematically simply expresses the sum of all points or the average once

it has been divided by N in the IDFT. Coefficient X1 is equal to

X(1) =

3∑
n=0

xn · e−i2π1n
1
4 = 3.696 + 1.531i.

Similarly, the remaining Xn can be calculated, giving X2 = 0 and X3 = 0.924 − 0.383i. Together

the different coefficients give:

x(k) = (3.696 + 1.531)
1

4
e2π

k
4 + (0.924− 0.383i)

1

4
e2π3

k
4 .

It can easily be confirmed that this in fact holds true for x0, x1, x2, and x3. Plotting this equation

for k ∈ [0; 4] reveals that the equation does not trace the ellipse but instead chooses a more unelegant

path. The graph can be viewed in figure 11. Methods to visually improve the DFT to accomplish

this will be discussed in section 6.
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Figure 11: the IDFT of an example set of data
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6 Improving the Discrete Fourier Transform

The Discrete Fourier Transform is best suited to process signals [4] and not to draw shapes. Thus

there are various improvements that can be made to enhance the visual experience at the cost of

precision. When one uses the unchanged DFT and IDFT with an unaltered set of data, drawings

become unrecognisable. Such an example can be viewed in figure 12. An IDFT will, in its original

form, require a single loop per point, making it unsuited for most drawings. Although it still runs

through every point, it is far from accurately resembling the inteded shape. Various changes can be

made to improve the final image.

Re

Im

Figure 12: an example of an unchanged IDFT running through a given set of points

6.1 Arrows of Negative Frequencies

Even when viewing the movement of a system of very few epicycles, chaotic activity can arise. They

feature many spirals that are created every time an epicycle completes a rotation before its deferent.

These are the core issue as they distract from the points that form the original shape. Such issues

can be circumvented by pairing up every arrow with another one that turns in the opposite direction

[12]. In figure 13 the movement of a single arrow can be compared to the paths of chains of two

arrows that add up to the length of the first.

When both arrows are of equal length they end up creating a simple line. This phenomenom can be

explained through Euler’s formula [10] which implies the following:

ei2π
kn
N + e−i2π

kn
N = cos(2π

kn

N
) + i sin(2π

kn

N
) + cos(−2π

kn

N
) + i sin(−2π

kn

N
) = 2 cos(2π

kn

N
).

The chain of arrows loses any imaginary component, from which follows that their sum only moves

on the real axis. Additionally, it equals the real component of 2ei2π
kn
N , describing an arrow that is

twice as long as one of the original summands. By multiplying the components with a coefficient

Xn, the direction and length of the line can be determined.

When the arrows are of unequal length they create an ellipse. It has a width of u+ v and a height

of u − v when u is the length of the longer arrow and v the length of the shorter one. Such an
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observation can also be explained with the help of Euler’s formula [10]:

uei2π
kn
N + ve−i2π

kn
N = u cos(2π

kn

N
) + ui sin(2π

kn

N
) + v cos(−2π

kn

N
) + vi sin(−2π

kn

N
)

= (u+ v) cos(2π
kn

N
) + i(u− v) sin(2π

kn

N
).

It follows that by splitting a single arrow into two with opposite frequencies, the total path can

become severely less chaotic.
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Figure 13: comparing the path of a single arrow to chains of two arrows

This idea can also be applied to the Fourier Transform. The IDFT is then equal to

x(k) =
1

N

N−1∑
n=−N+1

Xne
i2πnk 1

2N−1 .

Its counterpart, the DFT, sees a change in its domain which is equal to {−N+1,−N+2, · · · , N−1}
instead of {0, 1, · · · , N − 2, N − 1}. For every Xn there thus exists a X−n with an according arrow

that spins in the opposite direction. It is important to notice that Xn does not equal −X−n since

ex 6= − e−x. This strategy improves the result greatly as can be seen in figure 14. Nonetheless, the

final image has a rounded shape which can be reduced through another trick.

Page 17 of 68



6 IMPROVING THE DISCRETE FOURIER TRANSFORM Jan Philipp Birmanns

Re

Im

Figure 14: an example of the IDFT improved through arrows of negative frequencies

6.2 Generating Additional Data

Since the Fourier Transform is being used to recreate drawings in this case, visual appeal as opposed

to accuracy becomes the main focus. This allows the generation of additional data that will improve

the look of the result. Currently, the path taken by the chain of arrows in between the individual

points is completely free and thus often curves instead of remaining straight. Additional coordinates

located on the line between two points of the given data can be added, restricting the motion of the

arrows to more closely follow this line. The simplest method is adding the middlepoints of each pair

of adjacent points to the dataset. Expressed mathematically, with A being the original set of points

and A′ the altered, this is

A′ = A ∪ {x = (xn + xn+1)/2 : xn, xn+1 ∈ A} ∪ {(xN−1 + x0)/2}.

This process can be repeated which will lead to further straigtening of the connections. As figure

15 shows, it can result in a near perfect representation of a given shape even after only two cycles

of generating additional data. One downside is that points of organic shapes and poorly sampled

curves will, of course, also be connected through straight lines even though the intended drawing

may have been different. However, this strategy does prove particularly useful for poorly sampled

presets (such as the pi example in figure 15) as they often contain little information and many

straight lines.
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Re

Im

Figure 15: an example of the IDFT improved through generated points

6.3 Variable Precision

Mainly focusing on visual appeal instead of precision brings further options to light. While the

Fourier Transform can exactly trace a determined set of points, there are cases in which such

precision is not needed. Conventionally, the values Xk are calculated for all k ∈ Z : |k| < N .

The more Xk that are used in the final IDFT, the more accurate it becomes. Thus, it is possible to

use less at the cost of precision. As presented in figure 16, this cost is very small. Even when using

just 50 out of 152 coefficients, which is represented through the red line, only minor differences can

be detected. These become almost inexistant once 100 of 152 are present (blue). Mathematically,

this change restricts the domain of the DFT and alters the IDFT to the following

x(k) =
1

N

m−1∑
n=0

Xne
i2πnk 1

2N−1 .

where m is the number of coefficients.

Re

Im

Figure 16: an example of IDFTs of varying accuracy
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6.4 Sorting

A further visual enhancement that can be made is sorting arrows by size. This corresponds to

ordering the coefficients Xn by magnitude |Xn|. Such methods do not effect the final path. However,

they have the advantage that by moving larger values to the front, most of the displacement is

completed after the first few arrows. Due to their length the majority of movement can be observed

much more easily. Shorter arrows will in turn collect at the end of the chain.

The values Xn have the advantage that with increasing n their magnitude decreases. This follows

from the fact that to find Xn every value xn is multiplied by e−i2π
nk
N which is inversely proportional

to n. However, this does not imply that Xn > Xn+1 for every suitable n. The change corresponds to

a downwards trend rather than a strict order. By sorting the arrows, slight outliers can be put back

into place. The coefficient X0 is excluded from these processes. There is a wide range of sorting

algorithms that could be applied to this case. Some examples for simple solutions are: Bucket Sort,

Bubble Sort, and Counting Sort [13]. It is important to keep in mind that once the order has been

changed, implying that Xn 6= X ′n for at least one n, the IDFT must be adjusted such that the

frequency still matches with the correct coefficient.
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7 Automization of the DFT and IDFT

This project is accompanied by two pieces of software that demonstrate the theory of Fourier Trans-

forms. The first presents the aforementioned Discrete Fourier Transform. It allows a user to create a

drawing of their pleasing or pick from a range of examples which will then be traced by an epicycle.

JavaScript was chosen as the programming language, CSS and HTML were used to describe the user

interface. The entire code can be found in appendix A. In order to make the program as accessable

as possible, it has also been uploaded to dft.birmanns.org. Demonstrations can be found in section

8.

7.1 Usage

The user is presented with two options of input. The first option is to select one of the two given

examples. The first provides a pi-symbol, the second a logo previously used by the Kantonsschule

Im Lee which features the main building of the school. Both are loaded from txt-files that store

the coordinates that make up these shapes. This allows for simple modification and future addition

of further examples. Alternatively, the user can create a drawing themselves, using a mouse or

touchscreen. Every time the pen moves, a new data point is added to an array. It can be reset

with the press of an additional button located to the right of the ”Run Calculation” button. Both

examples and a drawing can be viewed in 8.

In the second step they can pick the amount of arrows that the final epicycle will consist of. This

value corresponds to the total number of coefficients Xn. Given that the DFT can only find values

up to XN , the user is limited by the length of the data set. As they alter their decision, the software

shows the arrows in their initial position along with the exact points that have been selected in

the previous step. The chain of arrows is created through a custom class that simply requires the

coefficients calculated through the DFT.

Once the confirm button has been pressed, the program moves to the final presentation of the

IDFT. As the arrows move, the last one is followed by a trail that runs through the previous points.

Additionally, the original drawing is shown, allowing a direct comparison. The movement can be

stopped with the pause button located at the bottom of the screen. Using the one next to it, the

user can reset the program and repeat the process with a different set of data.

7.2 Alterations

While the software is not demanding in any way to most computers, the IDFT can be altered in

code to be understood more easily. As section 4 has shown, it can be interpreted as a set of arrows.

This idea can be translated to JavaScript. When an instance of the class that constructs the arrows

is built, an object is generated with it. Upon its creation, the DFT is called to calculate the different

Xn. These are then used to find the initial angle and length of the arrows that will make up the

epicycle. Together with the matching frequency, these numbers are stored in the new object. A

further property is added to track the position that is being pointed at.

Whenever the screen refreshes the different angles are altered by a fixed amount multiplied by their

frequency. The position that the arrow points at is changed accordingly. This value is irrelevant to

the arrow itself as it is sufficiently defined by length and angle, however, it is useful to the next one.

The following arrow can use it to determine its global position. Its base matches the location of the

previous arrow’s head or where it is pointing to. Using length and angle the relative position of the
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head to the base can then be calculated. This process makes especially the tracking of the path of

an individual arrow much less tedious and more efficient. Otherwise this would have to be done by

calculating and subtracting two seperate IDFTs.

Another advantage of this method is that it allows the implementation of various improvements

proposed in section 6. The arrows can be assigned a precise order within the object that stores

the various values. Since the lengths have already been determined in a prevous step this process

is equivalent to using a sorting a algorithm that arranges the arrows according to these values. In

this case the Bubble Sort algorithm has been chosen. It repeatedly passes over the sequence and

compares two neighboring values with each other in each step. If they are in the incorrect order

their positions are swapped [13]. While the operation only has an efficiency of O(n2), it suffices for

this application. Once this step has been completed and each arrow has an according index, the

user can decide how many of these are utilized. The selection is limited to even numbers as for every

arrow that turns clockwise their must be one that turns in the other direction.

7.3 Further Development

Throughout the time during which this project was created, a program could be developed that

successfully demonstrates the beauty that lies within the Fourier Transform. Nonetheless, there

are various features that could not be completed within the given time frame. Some of the lacking

conveniences are further examples or various toggles to customize the final view. The most apparent

issue is the support for sketches that consist of multiple non-continuous lines. Even though the

program will still return a valid result, these more often than not will consist of much erratic

behaviour. This stems from the fact that the points will be traced in the order they were drawn.

In most cases this is far from optimal and can create unwanted lines. A solution to this is to,

before processing, find the shortest path that runs through all values. Unfortunately, this category

of problem takes up a large section of mathematics and could thus not be covered as a part of this

project.
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8 Examples in Two-Dimensional Space

This section presents screenshots of the software described in section 7. QR codes are located

underneath each image that will lead to videos of the respective epicycles in motion. The first

demonstration shows the creation of a custom drawing that is then traced through an epicycle

consisting of 201 arrows. The video features the entire process of creation, customization, and

viewing.

Figure 17: a screenshot of an epicycle tracing a drawing

Figure 18: https://youtu.be/RZB9pb-wBVs

The second features the greek letter pi. This epicycle is also one of the examples that can be selected

in the program. It is made of 152 arrows.

Figure 19: a screenshot of an epicycle tracing pi
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Figure 20: https://youtu.be/1d6mCSeMxlk

In the last sample the former logo of the Kantonsschule Im Lee can be seen. It, as well, is one of

the examples found in the software. The epicycle is composed of 96 arrows.

Figure 21: a screenshot of an epicycle tracing a logo

Figure 22: https://youtu.be/lSeHVt1KCTQ
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9 Introduction to Quaternions

The following sections will make use of quaternions which will thus be introduced here.

9.1 Concept

Similarly to complex numbers being an expansion of real numbers, quaternion numbers form a

further expansion of the complex numbers into a four-dimensional space H. They find a wide range

of applications in modern technology where they are most often used to calculate rotations in three-

dimensional space. The values are then referred to as Euler Angles [14]. Sir William Rowan Hamilton

was an Irish mathematician that developed the system of quaternions in 1843. He had sought to

find a method of describing three-dimensional problems in mechanics. After years of struggle he

found that by adding a fourth dimension, the normal laws of algebra could be maintained except for

communativity [15]. Instead of just using the imaginary number i =
√
−1, these numbers are made

up of two further imaginary dimensions: j and k. A quaternion q has the structure

q = a+ bi+ cj + dk.

In this representation a, b, c, and d are real numbers, i, j, and k are referred to as basic quaternions.

It is made up of a scalar part a and a vector part bi+ cj + dk. These terms are often shortened as

Sc(q) or q0 and Vec(q) respectively [16]. While simple addition and subtraction remain unchanged

with

q1 + q2 = (a1 + a2) + (b1 + b2)i+ (c1 + c2)j + (d1 + d2)k,

multiplication and division are altered. Multiplication in quaternion space is defined in the following

way [16]:

ij = k, ji = −k, jk = i, kj = −i, ki = j, ik = −j.

Most importantly [16],

i2 = j2 = k2 = ijk = −1.

As stated before, the quaternion space is thus non-communative. As in C, conjugates play an

important role. The conjugate of a quaternion q is

q̄ = a− bi− ci− di

and is often represented through q̄ [16]. The norm on the other hand is simply

|q| =
√
qq̄ =

√
a2 + b2 + c2 + d2.

Since the quaternion space is made up of four dimensions, it can also be interpreted as a three di-

mensional geometric space as Sir Hamilaton initially intended. This implies that a single quaternion

can be used to represent a point in space that would usually require three values x, y, and z. Such

interpretations will be used in the following sections, usually the real dimension is excluded. An

example can be seen in figure 23.
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Figure 23: a possible interpretation of 0 + 2i+ 4j + 3k in space

9.2 Basic Operations

From the axioms set in subsection 9.1 further operations can be derived. As quaternion numbers are

non-communative, these can differ from the R space. It is very common to multiply two quaternions.

This operation is equal to

q1 · q2 = (a1 + b1i+ c1j + d1k)(a2 + b2i+ c2j + d2k)

= (a1a2 − b1b2 − c1c2 − d1d2) + (a1b2 + b1a2 + c1d2 − d1c2)i

+(a1c2 − b1d2 + c1a2 + d1b2)j + (a1d2 + b1c2 − c1b2 + d1a2)k

but can also be denoted as a matrix multiplication due to its complexity:

q1 · q2 =


a2 −b2 −c2 −d2
b2 a2 d2 −c2
c2 −d2 a2 b2
d2 c2 −b2 a2

 ·

a1
b1
c1
d1

 · (1 i j k
)
.

Division makes use of the fact that q1/q2 = q1 · q−12 . The inverse of q corresponds to [16]

q−1 =
q̄

|q|2
.

This equation follows from:

q · q−1 = 1 =
|q|2

|q|2
= q

q̄

|q|2
.

Lastly, the exponential of a quaternion eq shares some similarities with Euler’s formula [10] and can

be written as

eq = ev(cos |w|+ w

|w|
sin |w|)
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where Sc(q) = v and Vec(q) = w [17]. This follows from the general definition [17]

ex =

∞∑
k=0

xk

k!
.

The equation must hold true as for Sc(q) = v and Vec(q) = w, eq = ev · ew. Furthermore, since w is

a pure unit quaternion and thus w2 = (bi+ cj + dk)2 = −b2 − c2 − d= − |w|2,

ew =

∞∑
k=0

wk

k!
= 1 +

w

1!
− |w|

2

2!
− |w|

2w

3!
+
|w|4

4!
+ · · ·

These summands can then be divided into two groups which equal the Taylor series of cos and sin:

ew = (1− |w|
2

2!

|w|4

4!
+ · · · ) +

w

|w|
(
|w|
1!
− |w|

3

3!
+
|w|5

5!
+ · · · ) = cos(|w|) +

w

|w|
sin(|w|).

This lastly gives

eq = ev · ew = ev(cos(|w|) +
w

|w|
sin(|w|)).
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10 Tracing Three-Dimensional Paths

Once again, three-dimensional paths will be approximated through a set of characteristic points that

are determined through user input. There are two options to apply the Discrete Fourier Transform

to such data. As in section 3, the index can be used to store a third component. The issues that this

brings about have previously been discussed. A more sustainable solution is to, as seen in section 3,

expand the input space. Complex numbers limit the input to two dimensions. Quaternion numbers

represent an expansion of the space into four dimensions which allows an input of the same size.

Once again a projection φ : R3 → H is defined which converts a point (x, y, z) to a quaternion

0 + xi+ yj + zk. The real dimension will remain unpopulated for now. Options to fill this spot will

be discussed in subsection 11.4.

The step from C to H, however, is not quite as a straight-forward as from R to C. In the form that

the DFT has been used thusfar it is uncapable of handling a quaternion input. It is altered, giving

the Discrete Quaternion Fourier Transform or DQFT. Due to the lack of commutativity in the set

of quaternion numbers, there are two such transforms: the right sided (RDQFT) and the left sided

Discrete Quaternion Fourier Transform (LDQFT). The RDQFT is defined as [7]

X(f) =

N−1∑
n=0

xn · e−µ2πnf
1
N

while the LDQFT is equal to [7]

X(f) =

N−1∑
n=0

e−µ2πnf
1
N · xn.

The terms “left sided” and “right sided” refer to the position of the exponential function e−µ2πnk
1
N .

This property will play an important role when choosing the inverse transform. The two are identical

besides this factor in usage and results. As the RDQFT more closely resembles the DFT used so

far, this project will solely rely on it and ignore the left sided transform. From now on the RDQFT

will also be called the DQFT. Nonetheless, all findings apply to both. The inverse of the RDQFT

is the following [7]:

x(f) =
1

N

N−1∑
n=0

eµ2πnf
1
N ·Xn.

It will be abbreviated as the IDQFT. The transform and its inverse bear a close resemblance to

their non-quaternionic counterparts. What sets them apart is that e has a quaternionic instead of a

complex exponent. µ is a place-holder for any pure unit quaternion. This is a quaternion of length

one that determines a direction in space. Throughout this project l has been chosen to equal µ in

most cases.
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11 How Do the DQFT and IDQFT Work?

11.1 Elliptical Epicycles

The IDQFT displayed in the ijk-space can vary from a traditional epicycle under certain conditions.

Instead of being made up of many circles, it consists of many ellipses. This can be shown by taking

a closer look at what the operation eµ2πnf
1
N · q where q is a quaternion expresses. First, µ will be

picked to equal i. The mentioned multipication is thus equal to

eµ2πnf
1
N · q = (cos(ω)a− sin(ω)b) + (cos(ω)b+ sin(ω)a)i+ (cos(ω)c− sin(ω)d)j + (cos(ω)d+ sin(ω)c)k

with ω = µ2πnf 1
N . This in turn gives, when excluding the real dimension,

(cos(ω)b+ sin(ω)a)i+ (c+ di)(cos(ω)j + sin(ω)k).

The multiplication thus expresses a circle on the jk-plane of radius
√
c2 + d2 that is shifted according

to (cos(ω)b + sin(ω)a)i. This produces an ellipse as can be seen in figure 24. Such shapes can be

observed no matter which dimension is left out, as there will always be a pair that forms such a

circle. It is important to note that the circular base is independant of the values of a and b.

−6

6

−6

6

−6

6

i j

k

Figure 24: a geometric representation of ei2πnf
1
N · (0 + 5i+ 4j + 3k)

When µ equals j, a slight change can be seen. The multiplication then gives:

eµ2πnf
1
N · q = (cos(ω)a− sin(ω)c) + (cos(ω)b+ sin(ω)d)i+ (cos(ω)c+ sin(ω)a)j + (cos(ω)d− sin(ω)b)k

which is equal to

(cos(ω)c+ sin(ω)a)j + (d+ bj)(cos(ω)k + sin(ω)i)

if the real dimension is eliminated. As shown in figure 25, this represents a circle on the ik-plane

that is stretched along the j-axis. Most importantly, the multiplication no longer runs through the

same values. However, as will be shown in the next passage, this does not effect whether the IDQFT

runs through the given data points or not. Lastly, when µ is equal to k the circular base moves to

the ij-plane. In the case of whole number pure unit quaternions, the base is always located on the
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plane perpendicular to the direction vector that runs through the origin and q in ijk-space.
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Figure 25: a geometric representation of ei2πnf
1
N · (0 + 5i+ 4j + 3k)

11.2 A Proof of the DQFT

This extract proves that the DQFT is capable of filtering out the coefficients Xn from a set of data.

It bears a close resemblance to section 5 where the same has been shown for the DFT. The goal of

the DQFT is to find the values Xn which allow the values xn to be calculated through

x(f) =
1

N

N−1∑
n=0

eµ2πnf
1
NXn.

Since it can be assumed that an IDQFT can be found for all sets of values xn, it can be inserted

into the DQFT:

N−1∑
n=0

e−µ2πnf
1
N xn =

1

N

N−1∑
n=0

e−µ2π
nf
N (

N−1∑
m=0

eµ2π
mn
N Xm) =

1

N

N−1∑
n=0

(

N−1∑
m=0

eµ2π
(m−f)n

N Xm).

When m = f , the multiplication returns Xf . In order to show that the remaining summands for

which m 6= f sum up to 0, the equation is further transformed:

1

N

N−1∑
n=0

(

N−1∑
m=0

eµ2π
(m−f)n

N Xm) =
1

N

N−1∑
m=0

(

N−1∑
n=0

eµ2π
(m−f)n

N Xm). (4)

This shows that the inner sum defines a geometric series when m 6= k. From this follows that the

geometric sum formula [11] can be applied:

N−1∑
n=0

eµ2π
(m−f)n

N Xm =

N∑
n=1

eµ2π
(m−f)(n−1)

N Xm = Xm
1− eµ2π

(m−f)N
N

1− eµ2πm−f
N

= Xm
1− eµ2π(m−f)

1− eµ2πm−f
N

As µ is a pure unit quaternion, eµ2π(m−f) is equal to

ev(cos(|w|) +
w

|w|
sin(|w|)) = ev(cos(2π(m− f)) + µ sin(2π(m− f))) = e0(1 + 0) = 1
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with v = Sc(µ2π(m− f)) = 0 and w = Vec(µ2π(m− f)). This implies

Xm
1− eµ2π(m−f)

1− eµ2πm−f
N

= Xm
0

1− eµ2πm−f
N

= 0.

This information can then be plugged into equation 4:

1

N

N−1∑
m=0

(

N−1∑
n=0

eµ2π
(m−f)n

N Xm) =
1

N

N−1∑
m=0

Xf = Xf .

It has thus been shown that the DQFT can in fact extract the coefficients Xn from a set of values

xn.

11.3 Example

How one must go about when using the DQFT will be demonstrated in this subsection. The set of

data used for this example is given in table 4. Figure 26 shows the points plotted in three-dimensional

space along with their orthogonal projections onto the ij-plane. There are four points, implying that

N = 4. In this example µ has chosen to equal k.

n pts. xn

0 (4.619, 1.148, 2.613) 4.619i+ 1.148j + 2.613k
1 (-1.913, 2.772, 1.082) −1.913i+ 2.772j + 1.082k
2 (-4.619, -1.148, -2.613) −4.619i− 1.148j − 2.613k
3 (1.913, -2.772, -1.082) 1.913i− 2.772j − 1.082k

Table 4: an example set of three-dimensional data
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Figure 26: a plot of an example set of data

The first step is to calculate X0. It is equal to

X0 = (4.619i+ 1.148j + 2.613k) + (−1.913i+ 2.772j + 1.082k)

+(−4.619i− 1.148j − 2.613k) + (1.913i− 2.772j − 1.082k) = 0.
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This value can already be determined by just plotting the values as in figure 26. It is clear that they

are all equidistant from the origin, implying that the fixed point that the arrows will be connected to

is also located there. In the next step X1 is found to have a value of 1.082+7.391i+3.061j+2.613k:

X1 = (4.619i+ 1.148j + 2.613k)e−k0
2π
4 + · · · + (1.913i− 2.772j − 1.082k)e−k3

2π
4

= (4.619i+ 1.148j + 2.613k) + · · · + (1.913i− 2.772j − 1.082k)(cos(3
2π

4
)− k sin(3

2π

4
))

= 2.164 + 14.782i+ 6.122j + 5.226k.

The remaining coefficients are X2 = 0 and X3 = −2.164 + 3.694i − 1.530j + 5.226k. With these

values the IDQFT has been determined:

x(f) =
1

4
(2.164 + 14.782i+ 6.122j + 5.226k)ek

2πf
4 +

1

4
(−2.164 + 3.694i− 1.530j + 5.226k)ek3

2πf
4 .

It can be confirmed that this in fact holds true for x0, x1, x2 and x3. The path taken by the IDQFT

has additionally been plotted in figure 27. Alongside this, the elliptical interpretation of the trans-

form is shown.
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Figure 27: the IDQFT of an example set of data

11.4 Representation of the Fourth Dimension

Since our world is limited to three spacial dimensions, the representation of a fourth spacial axis is

rather difficult. For this reason other mediums are often chosen. Points in space are most commonly

visualized through dots. This allows the communication of a fourth value through their size or

shape. Unfortunately, such methods are often misleading and create clutter. Sound can also be used

in certain circumstances but has no general applications. In these situations every value is matched

with a certain pitch.

It is much more popular to instead change the color of respective coordinates. For example, a black

dot could correspond to the value ten while a white dot could equal zero. Colors further have the

advantage that they can be defined through a wide range of values. They can be described as

warm/cold, dark/light, or even appealing/unappealing. Such properties, however, are difficult to

assign concrete values to and thus are unsuited. The wavelength of a color, on the other hand, is far

more fittng as it allows a color to be uniquely identified through a single value. While this solution
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can be easily understood, it is not commonly used due to the various calculations that are involved

and limited domain.

As computers often use the RGB or HSL color models these are by far the most convenient. The

RGB format consists of three single values that range from 0 to 255 [18]. Each represents the amount

red, green, or blue present in a color. This allows the creation of a linear interpolation similar to

the following between two colors (r1, g1, b1) and (r2, g2, b2):

r(x) =
x

xmax
·∆r + r1, g(x) =

x

xmax
·∆g + g1, b(x) =

x

xmax
·∆b+ b1

where x ∈ [0, xmax] and ∆r = r2 − r1, ∆g = g2 − g1, and ∆b = b2 − b1. The domain of x must be

determined beforehand. A Fourier Transform making use of such a scale where red equals six and

blue negative six can be found in figure 28. Similar calculations can be made for the HSL mode

where H ∈ [0°, 360°], SL ∈ [0, 1], and L ∈ [0, 1] [18].
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Figure 28: a set of data in which the fourth dimension is visualized through color
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12 Automization of the DQFT and IDQFT

In addition to a program that demonstrates the DFT, a piece of software has been created that

presents the DQFT. It has been coded in JavaScript as well and can be found at dqft.birmanns.org.

The exact code is located in appendix B. A number of screenshots and examples can be found in

section 13. They feature the program itself and animations it has created.

12.1 Usage

To the right side of the screen the user can find fields to enter the x, y, and z coordinates of one

of their desired points. Since it is rather difficult to use a mouse or touch screen to draw a three-

dimensional path, this method must be used instead of allowing the user to create them through

motion. Once the information has been entered, it can then be added to the space through the plus

button. The individual axis are limited to a domain of 0 to 20, coordinates outside of this range

cannot be entered. At the center of the screen the isometric projection of an empty space is shown.

It consists of just three axis that represent a quaternion space after removing the real dimension.

As more and more points are added the space fills with crosses located at the corresponding spots.

A simple projection φ : R3 → H is used here that transforms a point (x, y, z) to a quaternion

xi + yj + zk. The slider located at the bottom of the screen can be used to turn the scene around

the k-axis. Below the slider one can choose whether to show or hide the fourth dimension. It is

represented through a range of colors and based on a linear interpolation between a shade of yellow

and blue. This method has previously been described in subsection 11.4.

Once two or more points have been added, a chain of arrows will start tracing a shape that connects

them. The IDQFT is used for this with µ = k. This implies that arrows will appear to constantly

change their length unless viewed such that the k-axis disappears. They follow an elliptical path

that has previously been described in section 11.1. The last arrow’s tip is followed by a trail that

traces back N − 1 points. Conventional computers will experience performance issues as soon as

seven or more coordinates have been added. For this reason the user is prevented from adding more

than six. They in turn have the option to remove previously added points or alter the order that

they are being traced in.

12.2 Rendering

The simple three-dimensional effect is achieved through a series of matrix multiplications. The order

the steps are completed in is of high importance as they are non-commutative. In the first step the

single points are rotated around the k-axis through the following multiplicaiton:cos(α) − sin(α) 0

sin(α) cos(α) 0

0 0 1

 · ~p3 = ~p3,r

where α equals the current angle of the i-axis to its original position and ~p3 the vector from the origin

to the specific coordinates of a point. In the second step it is translated from the three-dimensional

space to a two-dimensional plane through an isometric projection. This is done through the following
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matrix multiplication: (
−
√
3
2

√
3
2 0

− 1
2 − 1

2 1

)
· ~p3,4 = ~p2.

In a last step the vector is scaled and translated to fit the window. Once completed, one is left with

a vector that is equivalent to the coordinates of the given point on the screen.

12.3 Further Development

In its current state the program already completes the tasks it was set to achieve, nonetheless, there

are features that could improve the experience. In its current version the user is restricted in their

viewing experience. A second dimension of movement could enable them to further understand

the process displayed. Especially an option of viewing the arrows from directly above could prove

beneficial. It would allow the ellipses to appear as cricles as the k-axis disappears and only the ij-

plane is visible. Before this can be achieved, however, the program’s performance must be improved.

This would also make the addition of further features possible. Most importantly, the ability to add

more points could be implemented and thus more complex preset examples.
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13 Examples in Three-Dimensional Space

As an addition to section 12, this one will present screen shots and videos from the software that

has been created. It is recommended that one also visits dqft.birmanns.org. Every screenshot has

been matched with a qr-code that leads to the video that the image stems from. The first sample

presents the IDQFT as it connects five randomly chosen points.

Figure 29: a screenshot of an IDQFT tracing five random points

Figure 30: https://youtu.be/PClDqjzHCLM

In the second example four random points are added. Subsequently, the scene is rotated back and

forth, presenting the epicycle from all sides.
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Figure 31: a screenshot of an IDQFT tracing four random points

Figure 32: https://youtu.be/1-M3gxb9zYo

The last presents a four-dimensional interpretation of the Fourier Transform. Color has been chosen

as a fourth axis. It interpolates linearly from (0,218,255) to (176,126,26). The set of data is made

up of four random points consisting of four values each.

Figure 33: a screenshot of an IDQFT tracing four random four-dimensional points
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Figure 34: https://youtu.be/LTKy-dPIYOo
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14 Concluding Remarks

As is the case for all of mathematics, Fourier Anaylsis is a field that seems to have no limits. With

every discovery, many more unknowns are uncovered. It is for this reason that boundaries but

also goals must be set. The moment of completing these has been reached in this paper. The

phenomenon that prompted this project has been explained and elaborated on. Both the Discrete

Fourier Transform and Discrete Quaternion Fourier Transform have been discussed in much detail

along with their domains, the sets of complex and quaternion numbers. These transforms had

previously only been discussed briefly in scientific resources accessible to the target audience.

The first step was taken by demonstrating that the DFT is capable of tracing drawings through the

help of the complex plane. It was accordingly proven that the IDFT can be understood as a series of

arrows or an epicycle. From this set of theory a piece of software could be developed that presents

the visual appeal that the Fourier Transform can have as well. A similar strategy was followed in

the three- and four-dimensional space. The DQFT and IDQFT were shown to have the ability to

follow three-dimensional paths. After finding a proof for this transform a short discussion about

visualizing a fourth dimension ensued. A second piece of software was developed to present this

theory as well.

There are a range of questions that have also been chosen to remain unanswered. Some have already

been named in subsections 7.3 and 12.3. Further, as the two-, three-, and four-dimensional spaces

have been explored, the next step would be the research of the five- or even n-dimensional spaces.

Many more pieces of software could be developped as well. The project has limited the number

of dimensions due to the given time frame. Various areas of Fourier Analysis and a number of

transforms have also remained unnamed for the same reason.
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Appendix A Listing

Visualization DFT

1 index.html . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

The index.html file describes the various elements that can be seen on the screen

at any moment in time.

2 styles.css . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

The styles.css file gives elements certain properties according to their id, class, or type.

3 script.js . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

The script.js file consists of the main code that controls all parts of the program. It

pulls many of its functions from other files.

4 calculation.js . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

The calculation.js file is made up of various functions that run mathematical cal-

culations such as the DFT and IDFT.

5 arrowTracerClass.js . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

The arrowTracerClass.js file contains the class that the arrows which will trace certain

shapes belong to.

6 draw.js . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

The draw.js file stores many useful functions that draw preset shapes such as arrows,

crosses, or lines.

7 UI.js . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

The UI.js describes the manner in which the appearances of elements are altered. These

transitions often contain animations.

8 KSimLee.txt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

The KSimLee.txt file holds the many coordinates that make up the former logo of the

Kantonsschule im Lee.

9 PI.txt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

The PI.txt file consists of the values that can be connected to form a pi-symbol.

Visualization DQFT

10 index.html . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

The index.html file describes the various elements that can be seen on the screen

at any moment in time.

11 styles.css . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

The styles.css file gives elements certain properties according to their id, class, or type.

12 script.js . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

The script.js file contains all code and controls the entire program.
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Appendix B Source Code Visualization DFT

The code for the program that visualizes the DFT consists of multiple documents. Their contents

can be found in the following listings.

Listing 1: index.html

1 <!DOCTYPE html>

2 <html lang="en">

3

4 <head>

5 <meta charset="UTF-8">

6 <meta name="viewport" content="width=device-width , initial-scale=1.0">

7 <meta http-equiv="X-UA-Compatible" content="ie=edge">

8 <title> Complex Fourier Transform </title>

9

10 <!-- CSS file -->

11 <link href="styles.css" rel="stylesheet">

12 <!-- animation library Anime.js -->

13 <script src="./ anime-master/lib/anime.min.js"></script>

14 <!-- preloads UI transitions -->

15 <script defer type ="module" src="./ UI.js"></script>

16 <!-- main script -->

17 <script defer src="script.js" type="module"></script>

18 </head>

19

20 <body>

21 <!-- canvases -->

22 <div id="wrapper">

23 <canvas id="detection_canvas"></canvas>

24 <canvas id="drawing_canvas"></canvas>

25 <canvas id="points_canvas"></canvas>

26 <canvas id="arrows_canvas"></canvas>

27 </div>

28

29 <!-- button positioned at the bottom center of the screen -->

30 <button id="button_main">

31 <!-- gets the user's arrow number input -->

32 <input id="arrow_number_input" type="number"></input>

33

34 <!-- calculation text -->

35 <div id="calculation_text">Run Calculation </div>

36

37 <!-- play/pause graphics -->

38 <svg id="play-pause" width="35" height="35" viewBox="0 0 35 35" >

39 <path id="pp_path0" d="M0 0H15V35H0V0Z" fill="#000000"/>

40 <path id="pp_path1" d="M20 0H35V35H20V0Z" fill="#000000"/>

41 </svg>

42 </button>

43

44 <!-- drawer that presents various examples -->

45 <div id="drawer_examples" data-toggled="false">

46 <div id="header_wrapper">

47 Examples

48 <div id="arrow"></div>

49 </div>

50 <!-- description of all examples -->

51 <div id="examples_wrapper">

52 <div data-source="KSimLee.txt">KS Im Lee </div>

53 <div data-source="PI.txt">PI</div>

54 </div>

55 </div>

56

57 <!-- further buttons -->

58 <button id="button_reset"></button>

59 <button id="button_restart"></button>

60 <button id="button_confirm">Confirm</button>

61

62 </body>

63

64 </html>

Listing 2: styles.css

1 * {

2 /* appearance */

3 margin: 0;

4 padding: 0;

5 box-sizing: border-box;

6

7 /* font */

8 font-family: Helvetica;

9 font-color: #27292 b;

10 }

11

12 body {
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13 /* apperance */

14 overflow: hidden;

15 background-color: #32373 e;

16 }

17

18

19

20

21 #detection_canvas {

22 /* position */

23 position: absolute;

24 z-index: -1;

25 }

26

27 #drawing_canvas {

28 /* position */

29 position: absolute;

30 z-index: -4;

31 }

32

33 #points_canvas {

34 /* position */

35 position: absolute;

36 z-index: -3;

37 }

38

39 #arrows_canvas {

40 /* position */

41 position: absolute;

42 z-index: -2;

43 }

44

45

46

47 #button_main {

48 /* position */

49 position: fixed;

50 left: 50%;

51 bottom: 50px;

52 transform: translate(-50 %,50%);

53 z-index: 4;

54

55 /* appearance */

56 width: 280px;

57 height: 60px;

58 border: none;

59 border-radius: 30px;

60 background-color: #f2b25c;

61

62 /* font */

63 text-align: center;

64 color: black;

65 text-decoration: none;

66 font-size: 30px;

67

68 /* misc */

69 cursor: pointer;

70 }

71

72 #calculation_text{

73 /* position */

74 position: absolute;

75 top: 0;

76

77 /* appearance */

78 width: 100%;

79 height: 100%;

80

81 /* children */

82 line-height: 60px;

83 text-align: center;

84 }

85

86 #input_wrapper{

87 /* appearance */

88 display: table-cell;

89 width:100 %;

90 height:100 %;

91

92 /* children */

93 align-items: center;

94 vertical-align: middle;

95 line-height: 60px;

96 }

97

98 #arrow_number_input{

99 /* position */

100 position: relative;

101 z-index: 1;

102

103 /* appearance */

104 display: none;
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105 width: 80px;

106 height: 40px;

107 opacity: 0;

108 border-width: 0;

109 border-radius: 5px;

110 background-color: #de9f57;

111

112 /* font */

113 text-align: center;

114 font-size: 30px;

115

116 /* misc */

117 cursor: text;

118 }

119

120 #arrow_number_input:focus{

121 /* appearance */

122 outline-color: #ac8146;

123 }

124

125 /* removes up and down arrows from number input */

126 #arrow_number_input::-webkit-outer-spin-button , #arrow_number_input::-webkit-inner-spin-button {

127 /* appearance */

128 -webkit-appearance: none;

129 margin: 0;

130 }

131

132 #play-pause {

133 /* position */

134 position: absolute;

135 right: 12.5 px;

136 bottom: 12.5 px;

137

138 /* appearance */

139 display: none;

140 opacity: 0;

141 }

142

143

144

145 #drawer_examples {

146 /* position */

147 position: fixed;

148 left: 50%;

149 bottom: 70px;

150 transform: translate(-50%,0);

151 z-index: 2;

152

153 /* appearance */

154 width: 210px;

155 height: 35px;

156 padding: 5px;

157 background-color: #4 c4e50;

158 border-radius: 10px;

159 text-align: center;

160 overflow: scroll;

161 }

162

163 #drawer_examples::-webkit-scrollbar {

164 /* appearance */

165 display: none;

166 }

167

168 #examples_wrapper > * {

169 /* appearance */

170 width: 100%;

171 --height: 3.4vh;

172 border-radius: calc(var(--height)*0.5);

173 background-color: #5 b5d60;

174 margin-top: 5px;

175

176 /* children */

177 line-height: var(--height);

178

179 /* misc */

180 cursor: pointer;

181 }

182

183 #header_wrapper{

184 /* apperance */

185 width:100 %;

186 height:30px; /* is changed in UI.openDrawer () */

187

188 /* children */

189 text-align: center;

190 }

191

192 #arrow {

193 /* position */

194 position: relative;

195 left: 24%;

196 top: -80%;
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197

198 /* apperance */

199 width: 0;

200 height: 0;

201 border-left: 7px solid transparent;

202 border-right: 7px solid transparent;

203 border-bottom: 7px solid #27292 b;

204 margin: auto;

205 margin-bottom: 10px;

206

207 /* misc */

208 cursor: pointer;

209 }

210

211

212

213 #button_reset{

214 /* position */

215 position: fixed;

216 left: calc (50% + 190px);

217 bottom: 50px;

218 transform: translate(-50 %,50%);

219 z-index: 3;

220

221 /* appearance */

222 height: 60px;

223 width: 60px;

224 border: none;

225 border-radius: 30px;

226 background-color: #f06d65;

227

228 /* font */

229 font-size: 20px;

230

231 /* misc */

232 cursor: pointer;

233 }

234

235 #button_restart{

236 /* position */

237 position: fixed;

238 bottom: 50px;

239 left: 50%;

240 transform: translate(-50 %,50%);

241 z-index: 3;

242

243 /* appearance */

244 height: 45px;

245 width: 45px;

246 opacity:0;

247 border: none;

248 border-radius: 50%;

249 background-color: #f06d65;

250

251 /* font */

252 font-size: 20px;

253

254 /* misc */

255 cursor: pointer;

256 }

257

258 #button_confirm{

259 /* position */

260 position: fixed;

261 left: 50%;

262 bottom: 33px;

263 transform: translate(-50 %,50%);

264 z-index: 10;

265

266 /* apperance */

267 display: none;

268 height: 30px;

269 width: 90px;

270 opacity: 0;

271 border: none;

272 border-radius: 15px;

273 background-color: #56 c2b8;

274

275 /* font */

276 font-size: 20px;

277

278 /* misc */

279 cursor: pointer;

280 }
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Listing 3: script.js

1 // Import modules

2 import * as draw from "./ draw.js";

3 import * as calc from "./ calculation.js";

4 import * as UI from "./UI.js";

5 import { arrowTracer } from "./ arrowTracerClass.js";

6

7

8 // Canvases

9 // Detects movement

10 const detectionCanvas = document.querySelector("#detection_canvas");

11 //Shows drawing

12 const drawingCanvas = document.querySelector("#drawing_canvas");

13 const ctxDrw = drawingCanvas.getContext('2d');

14 //Shows drawing as individual points

15 const pointsCanvas = document.querySelector("#points_canvas");

16 const ctxPts = pointsCanvas.getContext('2d');

17 // Contains moving arrows

18 const arrowsCanvas = document.querySelector("#arrows_canvas");

19 const ctxArrows = arrowsCanvas.getContext('2d');

20 //Array containing all canvases

21 const canvasList = ["#detection_canvas","#drawing_canvas","#points_canvas","#arrows_canvas"];

22

23

24 //UI

25 const buttonMain = document.querySelector("#button_main");

26 const drawerExamplesDiv = document.querySelector("#drawer_examples");

27 const toggleArrow = document.querySelector("#arrow");

28 const arrowInput = document.querySelector("#arrow_number_input");

29 const buttonConfirm = document.querySelector("#button_confirm");

30 const buttonReset = document.querySelector("#button_reset");

31 const examplesWrapper = document.querySelector("#examples_wrapper");

32 const buttonRestart = document.querySelector("#button_restart");

33

34

35 // Tracks the center of the screen

36 let origin = [window.innerWidth /2, window.innerHeight /2];

37

38 // Drawing variables

39 let drawing = false;

40 let coloredPixels = [];

41

42

43 // Contains current state

44 let currentState = 0;

45 //0: drawing phase

46 //1: calculation settings phase

47 //2: output phase (play)

48 //3: output phase (pause)

49

50

51

52

53 //* DRAWING *//

54

55

56 //Sets various properties once the program is loaded

57 window.addEventListener('load', () => {

58 ctxDrw.lineWidth = 3;

59 resizeWindow ();

60 //Load examples

61 UI.setProperties ();

62

63 //Show canvas that displays drawing

64 drawingCanvas.style.display = "block";

65 //Hide canvas that displays drawing as individual crosses

66 pointsCanvas.style.display = "none";

67 });

68

69

70 // Starts drawing when the mouse is pressed down

71 detectionCanvas.addEventListener('mousedown ', () => {

72 if(currentState == 0){

73 //Get mouse position

74 let mousePositionX = window.event.pageX;

75 let mousePositionY = window.event.pageY;

76

77 //Start drawing

78 drawing = true;

79 ctxDrw.moveTo(mousePositionX , mousePositionY);

80 ctxDrw.beginPath ();

81 }

82 })

83

84

85 //Ends drawing when the mouse is lifted

86 detectionCanvas.addEventListener('mouseup ', () => {

87 drawing = false;

88 ctxDrw.closePath ();

89 })

90
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91

92 //Ends drawing if the mouse leaves the window

93 detectionCanvas.addEventListener('mouseout ', () => {

94 drawing = false;

95 })

96

97

98 //Draws a line to the new mouse position when it is moved and drawing is activated

99 detectionCanvas.addEventListener('mousemove ', () => {

100 if(drawing){

101 //Gets the new mouse position

102 let mousePositionX = window.event.pageX;

103 let mousePositionY = window.event.pageY;

104

105 //Draws the line

106 ctxDrw.strokeStyle = "#BAB7AC";

107 ctxDrw.lineTo(mousePositionX , mousePositionY);

108 ctxDrw.stroke ();

109 coloredPixels.push ([ mousePositionX , mousePositionY ]);

110

111 //Adds a cross

112 draw.drawCross(ctxPts , [mousePositionX , mousePositionY], 5, "#BAB7AC");

113 }

114 })

115

116

117 // Starts drawing when a touch is detected

118 detectionCanvas.addEventListener('touchstart ', () => {

119 if(currentState == 0){

120 //Get touch position

121 let touchPositionX = event.touches [0]. pageX;

122 let touchPositionY = event.touches [0]. pageY;

123

124 //Start drawing

125 drawing = true;

126 ctxDrw.moveTo(touchPositionX , touchPositionY);

127 ctxDrw.beginPath ();

128 }

129 })

130

131

132 //Ends drawing when the touch ends

133 detectionCanvas.addEventListener('touchend ', () => {

134 drawing = false;

135 ctxDrw.closePath ();

136 })

137

138

139 //Draws a line to the new touch position when it is moved and drawing is activated

140 detectionCanvas.addEventListener('touchmove ', () => {

141 if(drawing){

142 //Gets the new touch position

143 let touchPositionX = event.touches [0]. pageX;

144 let touchPositionY = event.touches [0]. pageY;

145

146 //Draws the line

147 ctxDrw.strokeStyle = "#BAB7AC";

148 ctxDrw.lineTo(touchPositionX , touchPositionY);

149 ctxDrw.stroke ();

150 coloredPixels.push ([ touchPositionX , touchPositionY ]);

151

152 //Adds a cross

153 draw.drawCross(ctxPts , [touchPositionX , touchPositionY], 5, "#BAB7AC");

154 }

155 });

156

157

158

159

160 //* UI *//

161

162

163 window.addEventListener("resize", resizeWindow);

164

165

166 // Prevents refreshing through pulling down on Safari

167 if (window.safari) {

168 history.pushState(null , null , location.href);

169 window.onpopstate = function () {

170 history.go (1);

171 };

172 }

173

174

175 //Turns example divs into buttons

176 let examplesList = examplesWrapper.getElementsByTagName('div');

177 for(let i = 0; i < examplesList.length; i++){

178 // Selects example as current drawing

179 examplesList[i]. addEventListener('click ', () => {

180 coloredPixels = [];

181 //Loads values of the example from a txt-file

182 getCoordinates(examplesList[i]. dataset.source).then(function(result) {
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183 // Generate additional data

184 coloredPixels = fillCoordinates(result);

185 coloredPixels = fillCoordinates(coloredPixels);

186 // Converts to next phase

187 currentState = 1;

188 UI.morphButtonMain(currentState);

189 drawingCanvas.style.display = "none";

190 pointsCanvas.style.display = "block";

191 draw.drawCrosses(ctxPts , coloredPixels , 5, "#BAB7AC");

192 })

193 })

194 }

195

196

197 buttonMain.addEventListener('click ', () => {

198 if(currentState == 0 && coloredPixels.length > 0){

199 // Convert to customization phase

200 currentState = 1;

201 UI.morphButtonMain(currentState);

202 drawingCanvas.style.display = "none";

203 pointsCanvas.style.display = "block";

204 } else if(currentState == 2){

205 //Pause animation

206 window.cancelAnimationFrame(arrowAnim);

207 currentState = 3;

208 UI.togglePlayPause (0);

209 } else if(currentState == 3){

210 //Play animation

211 runAnimation(testArrows);

212 currentState = 2;

213 UI.togglePlayPause (1);

214 }

215 })

216

217

218 // Resets the drawing

219 buttonReset.addEventListener('click ', () => {

220 UI.resetCanvas(ctxDrw ,drawingCanvas);

221 UI.resetCanvas(ctxPts ,pointsCanvas);

222 coloredPixels = [];

223 })

224

225

226 //Loads an example arrow animation every time the arrow number is changed

227 let testArrows = "";

228 arrowInput.addEventListener('input ', () => {

229 if(arrowInput.value > coloredPixels.length){

230 arrowInput.value = parseInt(coloredPixels.length);

231 }

232 testArrows = new arrowTracer(calc.c_bubbleSort(calc.c_dft(coloredPixels ,parseInt(arrowInput.value /2))));

233 })

234

235

236 //Moves to phase 2 once the confirm button has been pressed

237 buttonConfirm.addEventListener('click ', () => {

238 if(currentState == 1 && arrowInput.value > 0){

239 runAnimation(testArrows);

240 drawingCanvas.style.display = "block";

241 pointsCanvas.style.display = "none";

242 currentState = 2;

243 UI.morphButtonMain(currentState);

244 }

245 })

246

247

248 // Completely resets the code when the restart button is pressed

249 buttonRestart.addEventListener('click ', () => {

250 window.cancelAnimationFrame(arrowAnim);

251 window.cancelAnimationFrame(testArrows);

252 UI.resetCanvas(ctxDrw ,drawingCanvas);

253 UI.resetCanvas(ctxPts ,pointsCanvas);

254 UI.resetCanvas(ctxArrows ,arrowsCanvas);

255 coloredPixels = [];

256 currentState=0;

257 UI.morphButtonMain(currentState);

258 UI.togglePlayPause (1);

259 });

260

261

262 //Opens and closes examples drawer

263 toggleArrow.addEventListener('click ', () => {

264 if(drawerExamplesDiv.dataset.toggled == "true"){

265 UI.closeDrawer ();

266 } else {

267 UI.openDrawer ();

268 }

269 });

270

271

272

273

274 //* MISC *//
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275

276

277 // Updates the arrow animation every 10ms

278 let arrowAnim;

279 function runAnimation(object){

280 setTimeout(function (){

281 if(currentState == 2){

282 object.update ();

283 object.Frame += 0.003;

284 arrowAnim = window.requestAnimationFrame(function (){runAnimation(object);});

285 }

286 }, 10);

287 }

288

289

290 //Loads values from a txt-file

291 async function getCoordinates(file){

292 let result = [];

293 await fetch(file).then(reponse => reponse.text ()).then(text => {

294 let lines = text.split("\r\n");

295 for(let i = 0; i < lines.length -1; i++){

296 let coordinates = lines[i]. split(", ");

297 // Converts relative positions to global positions

298 let windowSize = [window.innerWidth , window.innerHeight ];

299 result.push ([ parseFloat(coordinates [0])+windowSize [0]/2, parseFloat(coordinates [1])+windowSize [1]/2]);

300 }

301 })

302 return result;

303 }

304

305

306 //Adds the midpoint of every two adjacent points to a set of data

307 function fillCoordinates(coordinates){

308 let result = [];

309 for(let i = 0; i < coordinates.length; i++){

310 result.push(coordinates[i]);

311 let fillCord = [];

312 fillCord [0] = (coordinates[i][0] + coordinates [(i+1)%coordinates.length ][0]) / 2;

313 fillCord [1] = (coordinates[i][1] + coordinates [(i+1)%coordinates.length ][1]) / 2;

314 result.push(fillCord);

315 }

316 return result;

317 }

318

319

320 //Makes various adjusments when window is resized

321 function resizeWindow () {

322

323 // Determines points relative to origin before rescaling

324 let relativePixels = [];

325 for(let i=0; i < coloredPixels.length; i++){

326 relativePixels.push ([ coloredPixels[i][0] -origin [0], coloredPixels[i][1] -origin [1]]);

327 }

328

329 // Updates the sizes of the cavases to match the screen

330 // Automatically clears canvases

331 for(let i = 0; i < canvasList.length; i++){

332 let canvas = document.querySelector(canvasList[i]);

333 canvas.height = window.innerHeight;

334 canvas.width = window.innerWidth;

335 }

336

337 // Updates the position of the center of the screen

338 origin = [window.innerWidth /2, window.innerHeight /2];

339

340 for(let i=0; i<relativePixels.length; i++){

341 coloredPixels[i][0] =relativePixels[i][0]+ origin [0];

342 coloredPixels[i][1] =relativePixels[i][1]+ origin [1];

343 }

344

345 if(coloredPixels.length > 0){

346

347 //Reset drawing process

348 drawing = false;

349 ctxDrw.closePath ();

350

351 // Recreates the drawing 's path and crosses

352 ctxDrw.strokeStyle = "#BAB7AC";

353 ctxDrw.moveTo(coloredPixels [0][0] , coloredPixels [0][1]);

354 ctxDrw.beginPath ();

355 draw.drawCross(ctxPts , coloredPixels [0], 5, "#BAB7AC");

356

357 for(let i=1; i< coloredPixels.length; i++){

358 ctxDrw.lineTo(coloredPixels[i][0], coloredPixels[i][1]);

359 ctxDrw.stroke ();

360

361 draw.drawCross(ctxPts , coloredPixels[i], 5, "#BAB7AC");

362 }

363 ctxDrw.closePath ();

364

365 // Restarts arrow preview animation to match new point positions

366 if(currentState == 1){
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367 testArrows = new arrowTracer(calc.c_bubbleSort(calc.c_dft(coloredPixels ,parseInt(arrowInput.value /2))))

368 }

369

370 // Resets arrow animation to match new point positions

371 if(currentState > 1){

372 window.cancelAnimationFrame(arrowAnim);

373 testArrows = new arrowTracer(calc.c_bubbleSort(calc.c_dft(coloredPixels ,parseInt(arrowInput.value /2))));

374 runAnimation(testArrows);

375 }

376 }

377

378 }

Listing 4: calculation.js

1 //This file contains all functions related to calculations

2

3

4 // Calculates the length from the origin to a point / complex number

5 export function mgn(complex_number){

6 let magnitude = Math.sqrt(Math.pow(complex_number [0],2)+Math.pow(complex_number [1],2));

7 return magnitude

8 }

9

10

11 // Calculates the angle of a point / complex number to the origin

12 export function c_ang(complex_number){

13 let angle = Math.atan(complex_number [1]/ complex_number [0]);

14 if(complex_number [0]<0){

15 angle += Math.PI;

16 } else if(complex_number [1]<0){

17 angle += 2* Math.PI;

18 }

19 return angle;

20 }

21

22

23 //Sorts complex coefficients by magnitude , using the bubble sort method

24 export function c_bubbleSort(arr){

25 var len = arr.length;

26 var magnitudeArray = [];

27 for(let j = 0; j < len; j++){

28 let magnitude = mgn(arr[j][1]);

29 magnitudeArray.push(magnitude);

30 }

31 for (var i = len-1; i>=0; i--){

32 for(var j = 1; j<=i; j++){

33 if(magnitudeArray[j-1]<magnitudeArray[j]){

34 var temp = arr[j-1];

35 arr[j-1] = arr[j];

36 arr[j] = temp;

37 temp = magnitudeArray[j-1];

38 magnitudeArray[j-1] = magnitudeArray[j];

39 magnitudeArray[j] = temp;

40 }

41 }

42 }

43 return arr;

44 }

45

46

47 // Performs a complex fourier transform up to the bin N

48 export function c_dft(values , N){

49 let compoundResult = [];

50 N=parseInt(N);

51 for(let bin = -N+1; bin < N; bin++){

52 let complex_result = [0 ,0];

53

54 for(let i = 0; i < values.length; i++){

55 complex_result [0] += values[i][0] * Math.cos (2 * Math.PI * bin * i / values.length);

56 complex_result [0] += values[i][1] * Math.sin (2 * Math.PI * bin * i / values.length);

57 complex_result [1] -= values[i][0] * Math.sin (2 * Math.PI * bin * i / values.length);

58 complex_result [1] += values[i][1] * Math.cos (2 * Math.PI * bin * i / values.length);

59

60 }

61 compoundResult.push ([bin ,[ complex_result [0]/ values.length ,complex_result [1]/ values.length ]]);

62 // compoundResult.push ([bin ,[ complex_result [0], complex_result [1]]]);

63 }

64 return compoundResult;

65 }

66

67

68 //The Inverse Discrete Fourier Transform

69 export function c_idft(coefficients , frame){

70 let complex_result = [0,0];

71 let N = coefficients.length;

72

73 for(let k=0; k<coefficients.length; k++){

74 complex_result [0] += coefficients[k][1][0] * Math.cos(-2 * Math.PI * coefficients[k][0] * frame/N);

75 complex_result [0] -= coefficients[k][1][1] * Math.sin(-2 * Math.PI * coefficients[k][0] * frame/N);
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76 complex_result [1] += coefficients[k][1][0] * Math.sin(-2 * Math.PI * coefficients[k][0] * frame/N);

77 complex_result [1] += coefficients[k][1][1] * Math.cos(-2 * Math.PI * coefficients[k][0] * frame/N);

78 }

79

80 return complex_result;

81 }

Listing 5: arrowTracerClass.js

1 //This file contains the arrowTracer class

2

3 import * as draw from "./ draw.js";

4 import * as calc from "./ calculation.js";

5

6 // Canvas that the arrowTracer class is drawn on

7 const arrowsCanvas = document.querySelector("#arrows_canvas");

8 const ctxArrows = arrowsCanvas.getContext('2d');

9

10

11 //Class that creates the spinning arrows

12 export class arrowTracer{

13

14 // Varaible that holds the object

15 set changeTracerObj(value){

16 this.tracerObj = value;

17 }

18 get getTracerObj (){

19 return this.tracerObj;

20 }

21

22 // Variable that holds the current frame

23 set changeFrame(value){

24 this.Frame = value;

25 }

26 get getFrame (){

27 return this.Frame;

28 }

29

30 //The value the last arrow points at

31 set changeCurrentVal(value){

32 this.currentVal = value;

33 }

34 get getCurrentVal (){

35 return this.currentVal;

36 }

37

38 //Keeps track of points the trail goes through

39 set changeTrailLog(value){

40 this.trailLog = value;

41 }

42 get getTrailLog (){

43 return this.trailLog;

44 }

45

46

47

48 constructor(coefficients){

49 //Sets variables to default values

50 this.Frame = 0;

51 this.coefficients = coefficients;

52 this.trailLog = [];

53

54 // Creates the object that contains the arrows

55 //First creates a temporary place holder

56 let tempObj = {};

57 for(let i = 0; i < this.coefficients.length; i++){

58 tempObj["arrow"+i.toString ()] = {

59 pointingTo: [0,0],

60 length: calc.mgn(this.coefficients[i][1]),

61 angle: calc.c_ang(this.coefficients[i][1]),

62 frequency: this.coefficients[i][0]

63 };

64 }

65 // Applys the temporary place holder to the actual object

66 this.changeTracerObj = tempObj;

67

68 // this.addSliders ();

69 this.update ();

70 }

71

72 // Updates the arrow positions according to the current frame

73 update (){

74 // Clears the canvas

75 ctxArrows.clearRect (0,0, arrowsCanvas.width ,arrowsCanvas.height);

76

77 //Draws the arrows according to the values store in the arrow object

78 for(let i = 0; i < Object.keys(this.tracerObj).length; i++){

79 // Extracts values from the arrow object

80 let angle = this.tracerObj["arrow"+i.toString ()].angle + this.Frame*this.tracerObj["arrow"+i.toString ()]. frequency;

81 let length = this.tracerObj["arrow"+i.toString ()]. length;
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82

83 // Determines the starting position of the arrow

84 let position1 = [0,0];

85 //The starting position is equal to where the previous arrow pointed to

86 //An exception is made for the first arrow

87 if(i!=0){

88 position1 = this.tracerObj["arrow"+(i-1).toString ()]. pointingTo.slice ();

89 }

90

91 //The position the arrow points to is calculated based on angle and length

92 let position2 = [0,0];

93 position2 [0] = Math.cos(angle)*length+position1 [0];

94 position2 [1] = Math.sin(angle)*length+position1 [1];

95 //The position the arrow points to is stored in the arrow object

96 this.tracerObj["arrow"+i.toString ()]. pointingTo = position2.slice ();

97

98 //The arrow is drawn unless it is the first

99 if(i!=0){

100 draw.drawArrow(ctxArrows ,position1 ,position2 ,"#FCBE40");

101 this.currentVal = position2;

102 } else if(i==0){

103 //Adds the origin

104 ctxArrows.fillStyle = "#FCBE40";

105 ctxArrows.beginPath ();

106 ctxArrows.arc(position2 [0], position2 [1], 3, 0, 2 * Math.PI);

107 ctxArrows.fill ();

108 }

109 }

110 this.updateTrail ();

111 }

112

113

114

115 //Logs all values that a IDFT have the corresponding coefficients will run thorugh

116 printValues(coefficients , delta){

117 let result_string = "";

118 for(let frame = 0; frame < coefficients.length; frame += delta){

119 let temp = calc.c_idft(coefficients , frame);

120 result_string+=temp [0]. toString ()+" "+( -temp [1]).toString ()+"\n";

121 }

122 let temp = calc.c_idft(coefficients , 0);

123 result_string+=temp [0]. toString ()+" "+( -temp [1]).toString ()+"\n";

124 console.log(result_string);

125 }

126

127 // Creates a trail behind the last arrow

128 updateTrail (){

129 this.trailLog.unshift(this.currentVal)

130 if(this.Frame > 2* Math.PI - 0.5){

131 this.trailLog.pop ()

132 }

133

134 for(let i = 0; i < this.trailLog.length-1; i++){

135 draw.drawLine(ctxArrows ,this.trailLog[i],this.trailLog[i+1],"#FCBE40");

136 }

137 }

138 }

Listing 6: draw.js

1 //This file contains all functions related drawing preset shapes

2

3 import * as calc from "./ calculation.js"

4

5 //Draws an arrow

6 export function drawArrow(context , position1 , position2 , color){

7

8 //Draws shaft

9 drawLine(context , position1 , position2 , color);

10

11

12 //Draw arrowhead

13 const trianglePath = new Path2D ();

14 let distance = [position2 [0] -position1 [0], position2 [1] -position1 [1]];

15

16 // Determining size of head based on arrow length

17 let headSize = calc.mgn(distance)/3;

18 headSize = Math.max(Math.min(headSize ,15) ,4);

19

20 trianglePath.moveTo(position2 [0], position2 [1]);

21

22 // Determine angle of head to line

23 let angle = Math.atan(distance [1]/ distance [0]);

24 if(distance [0]<0){

25 angle += Math.PI;

26 }

27

28 //Moves anti-clockwise

29 //Side 1

30 let side1 = [0 ,0];
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31 side1 [0] = Math.cos(Math.PI *5/6+ angle)*headSize;

32 side1 [1] = Math.sin(Math.PI *5/6+ angle)*headSize;

33 trianglePath.lineTo(position2 [0]+ side1[0], position2 [1]+ side1 [1]);

34 //Side 2

35 let side2 = [0 ,0];

36 side2 [0] = Math.cos(Math.PI *7/6+ angle)*headSize;

37 side2 [1] = Math.sin(Math.PI *7/6+ angle)*headSize;

38 trianglePath.lineTo(position2 [0]+ side2[0], position2 [1]+ side2 [1]);

39 //Fill shape

40 context.fillStyle = color;

41 context.fill(trianglePath);

42

43 }

44

45 //Draws a line according to the given values

46 export function drawLine(context , position1 , position2 , color){

47 const line = new Path2D ();

48

49 line.moveTo(position1 [0], position1 [1]);

50 line.lineTo(position2 [0], position2 [1]);

51

52 context.strokeStyle = color;

53 context.stroke(line);

54 }

55

56 //Draws a cross according to the given values

57 export function drawCross(context , position , size , color){

58 const cross = new Path2D ();

59

60 cross.moveTo(position [0] + size/2, position [1] + size /2);

61 cross.lineTo(position [0] - size/2, position [1] - size /2);

62 cross.moveTo(position [0] + size/2, position [1] - size /2);

63 cross.lineTo(position [0] - size/2, position [1] + size /2);

64

65 context.strokeStyle = color;

66 context.stroke(cross);

67 }

68

69 //Draws a range of crosses according to the given values

70 export function drawCrosses(context , positions , size , color){

71 for(let i = 0; i < positions.length; i++){

72 drawCross(context , positions[i], size , color);

73 }

74 }

Listing 7: UI.js

1 //This file contains all functions that can modify the UI

2

3 //SVGs of play- and pause-symbols

4 const pathPause0 = "M0 0L35 17.5L0 35V0Z"

5 const pathPause1 = "M0 17.5 H35L0 35 V17.5Z"

6 const pathPlay0 = "M0 0H15V35H0V0Z"

7 const pathPlay1 = "M20 0H35V35H20V0Z"

8

9 // Elements

10 const drawerExamplesDiv = document.querySelector("#drawer_examples");

11 const arrowInput = document.querySelector("#arrow_number_input");

12 const buttonMain = document.querySelector("#button_main");

13 const buttonConfirm = document.querySelector("#button_confirm");

14 const examplesHeader = document.querySelector("#header_wrapper")

15 const examplesWrapper = document.querySelector("#examples_wrapper");

16 const svgPlayPause = document.querySelector("#play-pause");

17

18

19 //Load examples into example drawer

20 export function setProperties (){

21 examplesHeader.style.height = "18px";

22 drawerExamplesDiv.style.padding = "5px";

23

24 let vh = Math.max(document.documentElement.clientHeight , window.innerHeight || 0);

25 let examples = examplesWrapper.getElementsByTagName('div');

26 for(let i = 0; i < examples.length; i++){

27 examples[i]. style.height = (0.034 * vh).toString () + "px";

28 examples[i]. style.marginTop = "5px";

29 }

30 }

31

32 // Clears a selected canvas

33 export function resetCanvas(context ,canvas){

34 context.clearRect (0,0,canvas.width ,canvas.height);

35 }

36

37 // Calculates the example drawer 's height from the number of examples

38 function getDrawerHeight (){

39 let examplesList = examplesWrapper.getElementsByTagName('div');

40

41 let exampleNumber = examplesList.length;

42 let exampleHeight = parseFloat(examplesList [0]. style.height);

43 let exampleMargin = parseFloat(examplesList [0]. style.marginTop);
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44 let headerHeight = parseFloat(examplesHeader.style.height);

45 let padding = parseFloat(drawerExamplesDiv.style.padding);

46

47 let drawerHeight = (exampleHeight + exampleMargin) * exampleNumber + 2* padding + headerHeight + 10;

48 return drawerHeight;

49 }

50

51 // Animation that appears when opening the examples drawer

52 export function openDrawer (){

53 drawerExamplesDiv.dataset.toggled = "true";

54

55 // Expands the drawer upwards

56 let openDrawerAnim = anime ({

57 duration: 200,

58 easing: "easeOutExpo",

59 targets: ["#drawer_examples"],

60 height: getDrawerHeight (),

61 autoplay: false

62 })

63 openDrawerAnim.play ();

64

65 //Turns around the arrow that is used to toggle the drawer

66 let forwardSpinArrowAnim = anime({

67 duration: 200,

68 easing: "easeOutExpo",

69 targets: ["#arrow"],

70 rotate: 180,

71 autoplay: false

72 })

73 forwardSpinArrowAnim.play ();

74 }

75

76 // Animation that appears when closing the examples drawer

77 export function closeDrawer (){

78 drawerExamplesDiv.dataset.toggled = "false";

79

80 // Shrinks drawer to initial height

81 let closeDrawerAnim = anime({

82 duration: 200,

83 easing: "easeOutExpo",

84 targets: ["#drawer_examples"],

85 height: [getDrawerHeight () ,35],

86 autoplay: false

87 })

88 closeDrawerAnim.play ();

89

90 //Turns around the arrow that is used to toggle the drawer

91 let backSpinArrowAnim = anime({

92 duration: 200,

93 easing: "easeOutExpo",

94 targets: ["#arrow"],

95 rotate: 0,

96 autoplay: false

97 })

98 backSpinArrowAnim.play ();

99 }

100

101 // Describes animations that are initiated through the button at the bottom center

102 export function morphButtonMain(state){

103 arrowInput.style.display = "inline-block";

104

105 const timeline = anime.timeline ({

106 duration: 400,

107 easing: "easeOutExpo"

108 });

109

110 // Animation that connects the drawing and customization phases

111 if(state==0){

112 buttonMain.style.cursor = "pointer";

113 timeline.add ({

114 targets: ["#play-pause","#button_restart"],

115 opacity: 0

116 })

117 timeline.add ({

118 targets: ["#button_main"],

119 width: 280,

120 translateX: -140 ,

121 translateY: [30 ,30]

122 }).finished;

123 timeline.add ({

124 targets: ["#drawer_examples"],

125 translateX: -105 ,

126 translateY: 0,

127 opacity: 1

128 });

129 timeline.add ({

130 targets: ["#calculation_text"],

131 opacity: 1

132 });

133 timeline.add ({

134 targets: ["#button_reset"],

135 opacity: 1
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136 });

137 timeline.add ({

138 targets: ["#button_reset"],

139 translateX: -30 ,

140 translateY: 30

141 });

142

143 }

144

145 // Animation that connects the customization and viewing phases

146 if(state==1){

147 arrowInput.value = 0;

148 buttonConfirm.style.zIndex = 5;

149 buttonMain.style.cursor = "default";

150

151 timeline.add ({

152 targets: ["#drawer_examples"],

153 translateX: [-105 ,-105],

154 translateY: [0,30],

155 opacity: [1,0]

156 });

157 timeline.add ({

158 targets: ["#calculation_text"],

159 opacity: [1,0]

160 });

161 timeline.add ({

162 targets: ["#button_reset"],

163 translateX: [-30 ,-110],

164 translateY: [30 ,30]

165 });

166 timeline.add ({

167 targets: ["#button_reset"],

168 opacity: [1,0]

169 });

170 timeline.add ({

171 targets: ["#button_main"],

172 width: 130,

173 translateX: [-140 ,-65],

174 translateY: [30 ,30]

175 }).finished;

176 timeline.add ({

177 targets: ["#button_main"],

178 translateY: [30,-10]

179 })

180 timeline.add ({

181 targets: ["#button_confirm"],

182 begin: function (){

183 buttonConfirm.style.display = "inline-block";

184 }

185 })

186 timeline.add ({

187 targets: ["#button_confirm"],

188 translateY: 15,

189 translateX: -45

190 })

191 timeline.add ({

192 targets: ["#arrow_number_input","#button_confirm"],

193 opacity: [0,1]

194 })

195 }

196

197 // Returns main button to the initial state

198 else if(state == 2){

199

200 buttonConfirm.style.zIndex = 0;

201 buttonMain.style.cursor = "pointer";

202

203 timeline.add ({

204 targets: ["#button_confirm"],

205 translateX: [-45 ,-45],

206 translateY: [15,-40]

207 })

208 timeline.add ({

209 targets: ["#button_confirm","#arrow_number_input"],

210 opacity: [1,0]

211 })

212 timeline.add ({

213 targets: ["#button_confirm","#arrow_number_input"],

214 begin: function (){

215 buttonConfirm.style.display = "none";

216 arrowInput.style.display = "none";

217 }

218 })

219 timeline.add ({

220 targets: ["#button_main"],

221 translateY: [-10 ,30]

222 })

223 timeline.add ({

224 targets: ["#button_main"],

225 translateX: -30 ,

226 width: 60

227 })
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228 timeline.add ({

229 targets: ["#play-pause"],

230 begin: function (){

231 svgPlayPause.style.display = "inline-block";

232 }

233 })

234 timeline.add ({

235 targets: ["#play-pause","#button_restart"],

236 opacity: 1

237 })

238 timeline.add ({

239 targets: ["#button_restart"],

240 translateX: [-25 ,50],

241 translateY: [22.5 ,22.5]

242 })

243

244 }

245 }

246

247 //Swaps the button between the play- and pause-symbols

248 export function togglePlayPause(state){

249 // Switches to pause-symbol

250 if(state == 0){

251 let morphPause0 = anime({

252 duration: 0,

253 easing: "easeOutExpo",

254 targets: ["#pp_path0"],

255 d: [

256 {value: pathPause0}

257 ]

258 })

259 let morphPause1 = anime({

260 duration: 0,

261 easing: "easeOutExpo",

262 targets: ["#pp_path1"],

263 d: [

264 {value: pathPause1}

265 ]

266 })

267 let changeX = anime({

268 duration: 0,

269 easing: "easeOutExpo",

270 targets: ["#play-pause"],

271 right: 10.5

272 })

273

274 morphPause0.play ();

275 morphPause1.play ();

276 changeX.play ();

277

278 }

279 // Switches to pause-symbol

280 else if(state == 1){

281 let morphPlay0 = anime({

282 duration: 0,

283 easing: "easeOutExpo",

284 targets: ["#pp_path0"],

285 d: [

286 {value: pathPlay0}

287 ]

288 })

289 let morphPlay1 = anime({

290 duration: 0,

291 easing: "easeOutExpo",

292 targets: ["#pp_path1"],

293 d: [

294 {value: pathPlay1}

295 ]

296 })

297 let shiftX = (parseFloat(buttonMain.style.width) - svgPlayPause.width.animVal.value)/2;

298 let changeX = anime({

299 duration: 0,

300 easing: "easeOutExpo",

301 targets: ["#play-pause"],

302 right: shiftX

303 })

304

305 morphPlay0.play ();

306 morphPlay1.play ();

307 changeX.play ();

308 }

309 }

The following two documents hold the coordinate values of two examples:

Listing 8: KSimLee.txt

1 -232 , -81

2 -285 , -54
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3 -268 , -54

4 -268 , -35

5 -464 , -35

6 -464 , -26

7 -453 , -26

8 -453 , 46

9 -489 , 46

10 -473 , 71

11 -408 , 71

12 -401 , 81

13 401, 81

14 408, 71

15 473, 71

16 489, 46

17 453, 46

18 453, -26

19 464, -26

20 464, -35

21 268, -35

22 268, -54

23 285, -54

24 232, -81

Listing 9: PI.txt

1 -118 , -45

2 -109 , -45

3 -92 , -69.5

4 -75.5 , -77.5

5 -45.5 , -77.5

6 -48.5 , -31

7 -62 , 21.5

8 -77.5 , 50

9 -99 , 82

10 -96 , 100

11 -80 , 112.5

12 -57.5 , 109

13 -38.5 , 70.5

14 -31.5 , 21.5

15 -27.5 , -21

16 -23 , -77.5

17 28.5, -77.5

18 25, -34.5

19 19.5, 38.5

20 19.5, 80

21 36.5, 106

22 73.5, 112

23 99, 97

24 113, 72

25 116, 46.5

26 108.5, 46.5

27 99, 69

28 79, 75.5

29 58, 62

30 53, 18.5

31 58, -26.5

32 60.5, -76.5

33 116.5, -76.5

34 116.5, -112.5

35 -35 , -112.5

36 -64.5 , -110

37 -88 , -102

38 -101 , -87
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Appendix C Source Code Visualization DQFT

This section contains the code that describes the program that was used to visualize the Discrete

Quaternion Fourier Transform. It has been split into three documents.

Listing 10: index.html

1 <!DOCTYPE html>

2 <html lang="en">

3

4 <head>

5 <meta charset="UTF-8">

6 <meta name="viewport" content="width=device-width , initial-scale=1.0">

7 <meta http-equiv="X-UA-Compatible" content="ie=edge">

8 <title>Quaternion Fourier Transform </title>

9

10 <!-- CSS file -->

11 <link href="styles.css" rel="stylesheet">

12 <!-- script -->

13 <script src="script.js" defer></script>

14 </head>

15

16 <body>

17 <div id="wrapper">

18 <!-- allows to toggle whether the 4th dimension is shown -->

19 <div id="div_checkbox">

20 <input type="checkbox" id="check_display" checked>

21 </input>

22 Display 4th Dimension

23 </div>

24

25 <!-- can be used to turn the view -->

26 <input type="range" min="0" max="6.2830" value="0" id="slider" step="0.01">

27

28 <canvas id="canvas"></canvas>

29

30 <!-- input menu on the right -->

31 <div id="input_rec">

32 <div id="add_point">

33 <div class="point_wrapper">

34 <div class="plus_wrapper">

35 <div class="plus" id="plus"></div>

36 <div class="hitbox" id="hitbox"></div>

37 </div>

38 <div id="input_wrapper">

39 <input type="number" class="coordinate" id="xValIn"></input>

40 <input type="number" class="coordinate" id="yValIn"></input>

41 <input type="number" class="coordinate" id="zValIn"></input>

42 </div>

43 </div>

44 </div>

45 </div>

46

47 </div>

48 </body>

49

50 </html>

Listing 11: styles.css

1 * {

2 /* appearance */

3 padding: 0;

4 margin: 0;

5 }

6

7 html , body {

8 /* appearance */

9 height: 100vh;

10 margin: 0;

11 background-color: #32373 e;

12 overflow: hidden;

13 }

14

15 #wrapper {

16 /* apperance */

17 height: 100%;

18 width: 100%;

19 }

20

21 #input_rec {

22 /* apperance */

23 --height: 80%;

24 height: var(--height);

25 width: 6.5cm;

26 border-radius: 20px;
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27 background-color: #5 b5d60;

28

29 /* position */

30 position: fixed;

31 right: 3%;

32 top: calc (50% - calc(var(--height) / 2));

33 z-index: 10;

34

35 /* children */

36 align-items: center;

37 }

38

39 .point{

40 /* apperance */

41 width: 90%;

42 height: 10%;

43 background-color: #73767 C;

44 margin: auto;

45 margin-top: 5%;

46 border-radius: 10px;

47

48 /* position */

49 position: relative;

50

51 /* children */

52 text-align: center;

53 }

54

55 #add_point{

56 /* appearance */

57 width: 90%;

58 height: 10%;

59 background-color: #73767 C;

60 border-radius: 10px;

61

62 /* position */

63 position: absolute;

64 left: 5%;

65 bottom: 1.5%;

66

67 /* children */

68 text-align: center;

69 }

70

71 .point_wrapper{

72 /* appearance */

73 height: 50%;

74 width: 100%;

75

76 /* position */

77 position: relative;

78 top: 25%;

79

80 /* children */

81 text-align: center;

82 }

83

84 .coordinate{

85 /* appearance */

86 type: number;

87 height: 100%;

88 width: 20%;

89 margin: 3px;

90 margin-top: 0;

91 background-color: #CBCDD1;

92 border: 0;

93 border-radius: 4px;

94

95 /* children */

96 text-align: center;

97 }

98

99 .coordinate:focus{

100 /* apperance */

101 outline: none;

102 outline-color: transparent;

103 border: solid black;

104 border-width: 2px;

105 margin-top: -4px;

106 margin-right:1px;

107 margin-left:1px;

108 }

109

110 .arrows{

111 /* appearance */

112 width: 16%;

113 height: 100%;

114

115 /* position */

116 position: absolute;

117

118 /* children */
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119 text-align: center;

120 }

121

122 .arrow{

123 /* appearance */

124 border: solid black;

125 border-width: 0 3px 3px 0;

126 margin: auto;

127 margin-left:-4px;

128 padding: 3px;

129 opacity: 0.3;

130

131 /* position */

132 position: absolute;

133 left: 50%;

134

135 /* misc */

136 cursor: pointer;

137 }

138

139 .upArrow{

140 /* appearance */

141 border: solid black;

142 border-width: 0 3px 3px 0;

143 margin: auto;

144 margin-left:-4px;

145 padding: 3px;

146 opacity: 0.3;

147

148 /* position */

149 position: absolute;

150 left: 50%;

151 top: 15%;

152 transform: rotate(-135deg);

153

154 /* misc */

155 cursor: pointer;

156 }

157

158 .downArrow{

159 /* appearance */

160 border: solid black;

161 border-width: 0 3px 3px 0;

162 margin: auto;

163 margin-left:-4px;

164 padding: 3px;

165 opacity: 0.3;

166

167 /* position */

168 position: absolute;

169 left: 50%;

170 bottom: 15%;

171 transform: rotate (45 deg);

172

173 /* misc */

174 cursor: pointer;

175 }

176

177 .downArrow:hover , .upArrow:hover {

178 /* appearance */

179 opacity: 1;

180 }

181

182 .coordinate::-webkit-outer-spin-button ,

183 .coordinate::-webkit-inner-spin-button {

184 /* appearance */

185 -webkit-appearance: none;

186 margin: 0;

187 }

188

189 .cross {

190 /* appearance */

191 width: 100%;

192 height: 100%;

193 margin-top: 10%;

194 margin-left: -3px;

195 opacity: 0.3;

196

197 /* position */

198 position: absolute;

199

200 /* misc */

201 cursor: pointer;

202 }

203 .cross:hover {

204 /* appearance */

205 opacity: 1;

206 }

207 .cross:before , .cross:after {

208 /* appearance */

209 position: absolute;

210 content: ' ';
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211 height: 80%;

212 width: 3px;

213 background-color: #000000;

214 }

215 .cross:before {

216 /* position */

217 transform: rotate (45 deg);

218 }

219 .cross:after {

220 /* position */

221 transform: rotate(-45deg);

222 }

223

224 .plus_wrapper:hover .plus{

225 /* appearance */

226 opacity: 1;

227 }

228

229 .plus {

230 /* apperance */

231 width: 100%;

232 height: 100%;

233 opacity: 0.3;

234 margin-top: 4%;

235

236 /* position */

237 position: absolute;

238 }

239

240 .plus:before , .plus:after {

241 /* appearance */

242 width: 3px;

243 height: 80%;

244 content: ' ';

245 background-color: #000000;

246

247 /* position */

248 position: absolute;

249 }

250 .plus:after {

251 /* position */

252 transform: rotate(-90deg);

253 }

254

255 .hitbox {

256 /* appearance */

257 width:100 %;

258 height:100 %;

259

260 /* position */

261 position: absolute;

262 z-index: 10;

263

264 /* misc */

265 cursor: pointer;

266 }

267

268

269 .cross_wrapper{

270 /* appearance */

271 width: 16%;

272 height: 70%;

273

274 /* position */

275 position: absolute;

276 right: 0%;

277 top: 15%;

278

279 /* children */

280 text-align: center;

281 }

282

283 .plus_wrapper{

284 /* appearance */

285 width: 22.5%;

286 height: 70%;

287

288 /* position */

289 position: absolute;

290 right: 0%;

291 top: 15%;

292

293 /* children */

294 text-align: center;

295 }

296

297 #input_wrapper {

298 /* appearance */

299 height: 100%;

300 width: 100%;

301

302 /* position */
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303 position: relative;

304 left: -7%;

305 }

306

307 #div_checkbox {

308 /* apperance */

309 display:flex;

310 height: 4vh;

311 border-radius: 10px;

312 padding-left: 1.5vh;

313 padding-right: 1.5 vh;

314 margin-top:1vh;

315 margin-bottom: 1vh;

316 background-color: #5 b5d60;

317 color: #CBCDD1;

318

319 /* position */

320 position: fixed;

321 left: 50%;

322 bottom: 10%;

323 transform: translate(-50%,0);

324

325 /* font */

326 vertical-align: middle;

327 line-height: 4vh;

328 font-size:2vh;

329 font-family: Helvetica;

330 align-items: center;

331 justify-content: center;

332 }

333

334 #check_display {

335 /* appearance */

336 width: 2vh;

337 height: 100%;

338 margin-right: 1vh;

339

340 /* position */

341 position: relative;

342 }

343

344 #check_display:checked {

345 /* appearance */

346 color: #FCBE40;

347 background-color: #FCBE40;

348 }

349

350 #label_check {

351 /* appearance */

352 height: 100%;

353 margin-left: 6px;

354

355 /* position */

356 position: relative;

357 top: 50%;

358 transform: translateY(-1vh);

359

360 /* font */

361 font-size: 2vh;

362 }

363

364 #slider {

365 /* appearance */

366 --width: 30%;

367 width: var(--width);

368 overflow: hidden;

369 -webkit-appearance: none;

370 background-color: #5 b5d60;

371

372 /* position */

373 position: fixed;

374 left: calc (50% - calc(var(--width) / 2));

375 bottom: 17%;

376 }

377

378 #slider::-webkit-slider-runnable-track {

379 /* appearance */

380 margin-top: -1px;

381 -webkit-appearance: none;

382 color: #FCBE40;

383 }

384

385 #slider::-webkit-slider-thumb {

386 /* appearance */

387 width: 20px;

388 height: 10px;

389 -webkit-appearance: none;

390 background: #FCBE40;

391

392 /* misc */

393 cursor: ew-resize;

394 }
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Listing 12: script.js

1 // Canvases

2 const canvas = document.querySelector("#canvas");

3 const ctx = canvas.getContext('2d');

4 const canvasList = ["#canvas"]

5

6

7 //UI

8 const slider = document.querySelector("#slider");

9 const pointDisplay = document.querySelector("#input_rec");

10 const hitbox = document.querySelector("#hitbox");

11 const inputX = document.querySelector("#xValIn");

12 const inputY = document.querySelector("#yValIn");

13 const inputZ = document.querySelector("#zValIn");

14 const checkboxDisplay = document.querySelector("#check_display");

15

16

17 // Control how the three-dimensional space is displayed

18 let origin = [0,0]

19 const scale = 14

20 let rotation = 0

21 let transform = [[1,0,0],[0,1,0],[0,0,1]]

22

23 // Stores current frame

24 let frame = 0;

25

26 //Store current points

27 let set = randomSet (5,4,20);

28 let pointCounter = 0;

29 // Combines set and pointCounter

30 let pointList = [];

31

32 // Equals the mu used in the DQFT

33 let u = [0,0,0,1];

34

35

36

37

38 //* UI *//

39

40

41 window.addEventListener("resize",resizeWindow);

42

43

44 // Prevents refreshing through pulling down on Safari

45 if (window.safari) {

46 history.pushState(null , null , location.href);

47 window.onpopstate = function () {

48 history.go (1);

49 };

50 }

51

52

53 // Updates the view whenever it is rotated

54 slider.oninput = function (){

55 update ();

56 };

57

58

59 //Adds funcitonality to the plus button that allows points to be added

60 hitbox.addEventListener('click ', () => {

61 // Ensure suitable values have been chosen

62 if(inputX.value && inputY.value && inputZ.value && inputX.value >= 0 && inputY.value >= 0 && inputZ.value >= 0){

63 if(inputX.value <= 20 && inputY.value <= 20 && inputZ.value <= 20){

64

65 if(pointCounter==0){

66 set = [];

67 }

68 pointCounter ++;

69

70 // Selects a random fourth dimension

71 let r = Math.floor(Math.random ()*20)

72

73 pointList.push ([ pointCounter ,[r,inputX.value ,inputY.value ,inputZ.value ]]);

74 updatePointDisplay ();

75 }

76 }

77 });

78

79

80 //Adds a point of certain values to the list along with its HTML element

81 function addPoint(x,y,z,name){

82 let input = [x,y,z]

83

84 // Describes HTML elements

85 let instructions = {

86 point: ["#input_rec","div","point","point"],

87 point_wrapper: ["#point","div","point_wrapper","point_wrapper"],

88 arrows: ["#point_wrapper","div","arrows","arrows"],

89 upArrow: ["#arrows","div","upArrow","upArrow"],

90 downArrow: ["#arrows","div","downArrow","downArrow"],
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91 cross_wrapper: ["#point_wrapper","div","cross_wrapper","cross_wrapper"],

92 cross: ["#cross_wrapper","div","cross","cross"],

93 xVal: ["#point_wrapper","input","coordinate","xVal"],

94 yVal: ["#point_wrapper","input","coordinate","yVal"],

95 zVal: ["#point_wrapper","input","coordinate","zVal"],

96 }

97

98 // Adjusts various properties

99 let propArr = Object.keys(instructions);

100 for(let i = 0; i < propArr.length; i++){

101 instructions[propArr[i]][3]+="_"+name;

102 if(i!=0){

103 instructions[propArr[i]][0]+="_"+name;

104 }

105 }

106

107 // Contrsucts HTML Elements

108 for(let i = 0; i < propArr.length; i++){

109 let node = document.createElement(instructions[propArr[i]][1])

110 node.setAttribute("class",instructions[propArr[i]][2]);

111 node.setAttribute("id",instructions[propArr[i]][3]);

112

113 //Adds individual properties

114

115 if(instructions[propArr[i]][2] =="coordinate"){

116 node.setAttribute("type","number");

117 node.setAttribute("value",input[i-7]);

118 }

119

120 if(instructions[propArr[i]][2] =="upArrow"){

121 node.addEventListener('click ', () =>{

122 let pointInfo = pointList.find(element => element [0] ==name);

123 let pointIndex = pointList.indexOf(pointInfo);

124 if(pointIndex>0){

125 let temp = pointList[pointIndex-1 ];

126 pointList[pointIndex-1]= pointInfo;

127 pointList[pointIndex] = temp;

128 updatePointDisplay ();

129 }

130 })

131 }

132

133 if(instructions[propArr[i]][2] =="cross"){

134 node.addEventListener('click ', () =>{

135 document.querySelector("#point"+"_"+name).remove ();

136 let pointInfo = pointList.find(element => element [0] ==name);

137 let pointIndex = pointList.indexOf(pointInfo);

138 pointList.splice(pointIndex ,1);

139 updatePointDisplay ();

140 })

141 }

142

143 document.querySelector(instructions[propArr[i]][0]).appendChild(node);

144 }

145 }

146

147

148 // Refreshes point menu on the right to match current points

149 function updatePointDisplay (){

150 console.log(pointList);

151

152 let childCount = pointDisplay.children.length;

153 for(let i = 1; i < childCount; i++){

154 pointDisplay.children [1]. remove ();

155 }

156

157 set = [];

158

159 for(let i = 0; i<p ointList.length; i++){

160 addPoint(pointList[i][1][1] , pointList[i][1][2] , pointList[i][1][3] , pointList[i][0]);

161 set[i]=[pointList[i][1][0] , pointList[i][1][1] , pointList[i][1][2] , pointList[i][1][3]];

162 }

163

164 frame = 0;

165 }

166

167

168

169

170 // ANIMATION

171

172

173 // Animation is started upon opening the program

174 runAnimation ();

175

176

177

178 let arrowAnim;

179 // Repeats the update function

180 function runAnimation (){

181 setTimeout(function (){

182 update ();
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183 frame += 0.003;

184 arrowAnim = window.requestAnimationFrame(function (){runAnimation ()});

185 }, 10);

186 }

187

188

189 // Updates the three-dimensional space

190 function update (){

191 rotation = slider.value;

192 ctx.clearRect (0,0,canvas.width ,canvas.height);

193

194 //Axis

195 arrow3D(ctx ,[0,0,0],[20,0,0],"#BAB7AC");

196 arrow3D(ctx ,[0,0,0],[0,20,0],"#BAB7AC");

197 arrow3D(ctx ,[0,0,0],[0,0,20],"#BAB7AC");

198

199 //Draws the arrows that make up the IDQFT

200 if(set.length > 1){

201 for(let i=1;i<IDQFT(set.length-1+frame ,DQFT(set),true).length;i ++){

202 arrow3D(ctx ,[IDQFT(set.length-1+frame ,DQFT(set),true)[i-1][1], IDQFT(set.length-1+frame ,DQFT(set),true)[i-1][2], IDQFT(

set.length-1+frame ,DQFT(set),true)[i-1 ][3]] ,[ IDQFT(set.length-1+frame ,DQFT(set),true)[i][1], IDQFT(set.length-1+frame ,

DQFT(set),true)[i][2], IDQFT(set.length-1+frame ,DQFT(set),true)[i][3]] ,"#FCBE40");

203 }

204 }

205

206 //Draws trail

207 for(let i=frame;i<=set.length-1+frame;i+=0.01){

208 line3D ([IDQFT(i,DQFT(set))[1],IDQFT(i,DQFT(set))[2],IDQFT(i,DQFT(set))[3]],[ IDQFT(i+0.01 , DQFT(set))[1],IDQFT(i+0.01 , DQFT(set)

)[2], IDQFT(i+0.01, DQFT(set))[3]], getColor(IDQFT(i,DQFT(set))[0]));

209 }

210

211 //Drwas the various points

212 for(let i=0;i<set.length;i+=1){

213 cross3D(ctx ,[set[i][1],set[i][2],set[i][3]],7, getColor(set[i][0]));

214 }

215 }

216

217

218

219

220 // DRAWING

221

222

223 //Will draw a cross of given properties on a two-dimensional plane

224 function drawCross(context , position , size , color){

225 const cross = new Path2D ();

226

227 cross.moveTo(position [0] + size/2, position [1] + size /2);

228 cross.lineTo(position [0] - size/2, position [1] - size /2);

229 cross.moveTo(position [0] + size/2, position [1] - size /2);

230 cross.lineTo(position [0] - size/2, position [1] + size /2);

231 context.strokeStyle = color;

232 context.stroke(cross);

233 }

234

235

236 //Will draw a cross of given properties in a three-dimensional space

237 function cross3D(context , p1, size , color){

238 let position=render3D(p1);

239 const cross = new Path2D ();

240

241 cross.moveTo(position [0] + size/2, position [1] + size /2);

242 cross.lineTo(position [0] - size/2, position [1] - size /2);

243 cross.moveTo(position [0] + size/2, position [1] - size /2);

244 cross.lineTo(position [0] - size/2, position [1] + size /2);

245 context.strokeStyle = color;

246 context.stroke(cross);

247 }

248

249

250

251 function dot3D(context , p1, size , color){

252 let position=render3D(p1);

253 const dot = new Path2D ();

254

255 dot.arc(position [0], position [1],size ,0,2* Math.PI);

256 context.fillStyle = color;

257 context.fill(dot);

258 }

259

260

261

262 function line3D(p1,p2 ,color="#FCBE40"){

263 const line = new Path2D ();

264 line.moveTo(render3D(p1)[0], render3D(p1)[1]);

265 line.lineTo(render3D(p2)[0], render3D(p2)[1]);

266 ctx.strokeStyle = color;

267 ctx.stroke(line);

268 }

269

270

271
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272 function arrow3D(context , p1, p2 , color){

273

274 let position1 = render3D(p1);

275 let position2 = render3D(p2);

276

277 //Draw line

278 const line = new Path2D ();

279

280 line.moveTo(position1 [0], position1 [1]);

281 line.lineTo(position2 [0], position2 [1]);

282 context.strokeStyle = color;

283 context.stroke(line);

284

285

286 //Draw arrowhead

287 const trianglePath = new Path2D ();

288 let distance = [position2 [0] -position1 [0], position2 [1] -position1 [1]];

289

290 // Determining size of head based on arrow length

291 let headSize = mgn([p1[0]-p2[0],p1[1]-p2[1],p1[2] -p2 [2]]);

292 headSize = Math.max(Math.min(headSize ,15) ,4);

293

294 trianglePath.moveTo(position2 [0], position2 [1]);

295

296 // Determine angle of head to line

297 let angle = Math.atan(distance [1]/ distance [0]);

298 if(distance [0]<0){

299 angle += Math.PI;

300 }

301

302 //Moves anti-clockwise

303 //Side 1

304 let side1 = [0 ,0];

305 side1 [0] = Math.cos(Math.PI *5/6+ angle)*headSize;

306 side1 [1] = Math.sin(Math.PI *5/6+ angle)*headSize;

307 trianglePath.lineTo(position2 [0]+ side1[0], position2 [1]+ side1 [1]);

308 //Side 2

309 let side2 = [0 ,0];

310 side2 [0] = Math.cos(Math.PI *7/6+ angle)*headSize;

311 side2 [1] = Math.sin(Math.PI *7/6+ angle)*headSize;

312 trianglePath.lineTo(position2 [0]+ side2[0], position2 [1]+ side2 [1]);

313 //Fill shape

314 context.fillStyle = color;

315 context.fill(trianglePath);

316

317 }

318

319

320

321

322 // CALCULATION

323

324

325 //The Discrete Quaternion Fourier Transform

326 function DQFT(values){

327 let result = [];

328 let M = values.length;

329

330 for(let t=0;t<=M-1;t ++){

331 let subtotal = [0,0,0,0]

332 for(let x=0;x<=M-1;x ++){

333 let summand = q_mult(values[x],q_exp(q_mult(u,[-2*Math.PI *(x*t/M) ,0,0,0])));

334 subtotal = q_add(subtotal , summand);

335 }

336 result.push ([t,q_mult ([1/ Math.pow(M,0.5) ,0,0,0], subtotal)]);

337 }

338

339 return result;

340 }

341

342

343 //The Inverse Discrete Quaternion Fourier Transform

344 function IDQFT(t,values ,subs=false){

345 let subtotals = [];

346 let total = [0,0,0,0];

347 let M = values.length;

348

349 for(let x=0;x<=M-1;x ++){

350 let summand = q_mult(values[x][1], q_exp(q_mult(u,[2* Math.PI *( values[x][0]*t/M) ,0,0,0])));

351 total = q_add(total , q_mult ([1/ Math.pow(M,0.5) ,0,0,0],summand));

352 subtotals.push(total);

353 }

354

355

356 if(subs==true){

357 return subtotals;

358 } else {

359 return total;

360 }

361 }

362

363
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364 //Will calculate the length of a vector

365 function mgn(vec){

366 let result = 0

367 for(let i=0;i<vec.length;i ++){

368 result += Math.pow(vec[i],2);

369 }

370 result = Math.pow(result ,0.5);

371 return result

372 }

373

374

375 // Extracts the vector part of a quaternion

376 function Vec(quaternion){

377 return [quaternion [1], quaternion [2], quaternion [3]]

378 }

379

380

381 //The exponential function for quaternions

382 function q_exp(q){

383 let mgnSc = mgn(Vec(q))

384 let result= [0,0,0,0]

385

386 result [0] =Math.pow(Math.e ,q[0])*Math.cos(mgnSc)

387

388 if(mgnSc!=0){

389 for(let i=1; i<4; i++){

390 result[i] = Math.pow(Math.e ,q[0])*(q[i]/mgnSc)*Math.sin(mgnSc)

391 }

392 }

393 return result

394 }

395

396

397 function q_add(p,q){

398 return [p[0]+q[0],p[1]+q[1],p[2]+q[2],p[3]+q[3]];

399 }

400

401

402 function q_sub(p,q){

403 return [p[0]-q[0],p[1]-q[1],p[2]-q[2],p[3]-q[3]];

404 }

405

406

407 function q_mult(p,q){

408 let result = [0,0,0,0];

409

410 result [0]=p[0]*q[0]-p[1]*q[1]-p[2]*q[2]-p[3]*q[3];

411 result [1]=p[0]*q[1]+p[1]*q[0]-p[2]*q[3]+p[3]*q[2];

412 result [2]=p[0]*q[2]+p[1]*q[3]+p[2]*q[0]-p[3]*q[1];

413 result [3]=p[0]*q[3]-p[1]*q[2]+p[2]*q[1]+p[3]*q[0];

414

415 return result;

416 }

417

418

419 //Apply a 3x3 projection to a given vector

420 function applyProjection(mtx ,vec3){

421 let result = [0,0,0];

422 result [0] = mtx [0][0]* vec3 [0]+ mtx [0][1]* vec3 [1]+ mtx [0][2]* vec3 [2];

423 result [1] = mtx [1][0]* vec3 [0]+ mtx [1][1]* vec3 [1]+ mtx [1][2]* vec3 [2];

424 result [2] = mtx [2][0]* vec3 [0]+ mtx [2][1]* vec3 [1]+ mtx [2][2]* vec3 [2];

425 return result;

426 }

427

428

429 //Will multiply two 3x3 matrices

430 function mtx_mult(mtx1 ,mtx2){

431 let result = [[0,0,0],[0,0,0],[0,0,0]];

432 result [0][0] = mtx1 [0][0]* mtx2 [0][0]+ mtx1 [0][1]* mtx2 [1][0]+ mtx1 [0][2]* mtx2 [2][0];

433 result [1][0] = mtx1 [1][0]* mtx2 [0][0]+ mtx1 [1][1]* mtx2 [1][0]+ mtx1 [1][2]* mtx2 [2][0];

434 result [2][0] = mtx1 [2][0]* mtx2 [0][0]+ mtx1 [2][1]* mtx2 [1][0]+ mtx1 [2][2]* mtx2 [2][0];

435 result [0][1] = mtx1 [0][0]* mtx2 [0][1]+ mtx1 [0][1]* mtx2 [1][1]+ mtx1 [0][2]* mtx2 [2][1];

436 result [1][1] = mtx1 [1][0]* mtx2 [0][1]+ mtx1 [1][1]* mtx2 [1][1]+ mtx1 [1][2]* mtx2 [2][1];

437 result [2][1] = mtx1 [2][0]* mtx2 [0][1]+ mtx1 [2][1]* mtx2 [1][1]+ mtx1 [2][2]* mtx2 [2][1];

438 result [0][2] = mtx1 [0][0]* mtx2 [0][2]+ mtx1 [0][1]* mtx2 [1][2]+ mtx1 [0][2]* mtx2 [2][2];

439 result [1][2] = mtx1 [1][0]* mtx2 [0][2]+ mtx1 [1][1]* mtx2 [1][2]+ mtx1 [1][2]* mtx2 [2][2];

440 result [2][2] = mtx1 [2][0]* mtx2 [0][2]+ mtx1 [2][1]* mtx2 [1][2]+ mtx1 [2][2]* mtx2 [2][2];

441 return result;

442 }

443

444

445

446

447 // RENDERING

448

449

450 // Converts a three-dimensional point to a two-dimensional point on screen

451 function render3D(vector3){

452 let vec2 = [0,0]

453 let vec3 = applyProjection(rotate3D(transform ,rotation),vector3);

454 vec2 [0] = (-Math.pow (3 ,0.5) /2)*vec3 [0]+( Math.pow (3 ,0.5) /2)*vec3 [1]

455 vec2 [1] = -(-0.5*vec3 [0] -0.5*vec3 [1]+ vec3 [2])
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456 vec2 [0] *= scale

457 vec2 [1] *= scale

458 vec2 [0] += origin [0]

459 vec2 [1] += origin [1]

460 return vec2

461 }

462

463

464 // Rotates a matrix around the z-axis by a given angle

465 function rotate3D(mtx ,angle){

466 let mtx_rotation = [[ Math.cos(angle),-Math.sin(angle) ,0],[ Math.sin(angle),Math.cos(angle) ,0],[0,0,1]];

467 return mtx_mult(mtx ,mtx_rotation);

468 }

469

470

471

472 // MISC

473

474

475 // Generates a random array of n number with a maximum value of max

476 function randomArray(n, max){

477 let arr = []

478 for(let i=0;i<n;i ++){

479 arr.push(Math.floor(Math.random ()*max));

480 }

481 return arr

482 }

483

484

485 // Generates a set of n arrays with size numbers and a maximum value of amx

486 function randomSet(n, size , max){

487 let set = []

488 for(let i=0;i<n;i ++){

489 set.push(randomArray(size ,max));

490 }

491 return set

492 }

493

494

495 //Picks a color on a linear scale between red and blue

496 function getColor(val){

497

498 if(checkboxDisplay.checked == false){

499 return "#FCBE40";

500 }

501

502 let col1 = [0 ,218 ,255]

503 let col2 = [176 ,126 ,26]

504

505 let r = Math.round(val /20*( col1 [0] -col2 [0])+col2 [0]);

506 let r0 = Math.floor(r/16);

507 let r1 = (r/16-r0)*16;

508

509 let g = Math.round(val /20*( col1 [1] -col2 [1])+col2 [1]);

510 let g0 = Math.floor(g/16);

511 let g1 =(g/16-g0)*16;

512

513 let b = Math.round(val /20*( col1 [2] -col2 [2])+col2 [2]);

514 let b0 = Math.floor(b/16);

515 let b1 =(b/16-b0)*16;

516

517 return "#"+r0.toString (16)+r1.toString (16)+g0.toString (16)+g1.toString (16)+b0.toString (16)+b1.toString (16);

518 }

519

520

521 //Makes variuos adjusments when the window is resized

522 resizeWindow ();

523 function resizeWindow () {

524 for(let i = 0; i < canvasList.length; i++){

525 let canvas = document.querySelector(canvasList[i]);

526 canvas.height = window.innerHeight;

527 canvas.width = window.innerWidth;

528 }

529

530 origin = [window.innerWidth /2, window.innerHeight /2]

531 }
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