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Abstract

Inspired by the formation and applications of Chladni figures on violin

plates, this paper aims to further my understanding of how Chladni figures

form by constructing a mathematical and physical model myself. Armed

only with the book “Elementary Differential Equations and Boundary Value

Problems (W. Boyce and R. DiPrima, 1986)”, from which the vast majority

of my knowledge on this subject stems, my father’s workshop as well as the

school’s science lab, I set out on the mission to explore and solve the two

dimensional partial differential wave equation on my own. The methods in

this paper are not necessarily conventional, since they were largely obtained

through hours of trial and error.

As I have always been fascinated by how mathematics is used to describe

physical and natural phenomena, one main goal for this paper is to docu-

ment my personal mathematical journey. I have therefore presented a large

portion of the mathematics in the main body of the paper.
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1 A Brief Explanation of Chladni

Figures

When listening to a string instrument, the wave like nature of sound comes

naturally. The notion of a vibrating string is one which we are accustomed

to and therefore find inherently logical. However, when confronted with

vibrations in higher dimensions, it is easy to become confused by the intri-

cacy of the oscillations. Luckily, we can come up with a simple but effective

method to help us understand the vibration of two dimensional surfaces,

such as the back plate of a violin.

Chladni figures are a way to visualize the nodes of standing waves on a plate

or membrane. They were first observed by Galileo in 1638 and later more

rigorously explored by the 19th century German physicist and musician

Ernst Chladni. By spreading a fine grain such as sand or salt on a brass

plate and stroking the plate with a cello or bass bow, Chladni was able to

show how the grain agglomerated in certain patterns known as modes. This

happens because when a plate resonates, just like a string, there are certain

points where the plate does not vibrate (node).

Figure 1: Vibration and nodes of a string

In the illustration above, the nodes are the points A, B, C and D. Extending

this to a two dimensional, the fine grain would be pushed away from the

high/low points (antinodes) and would build up at the nodes. When plates

resonate, it is possible to create intricate patterns by using the method of

Ernst Chladni.

Despite being able to visualize the patterns on a two dimensional plate, the

necessary mathematics to describe and predict the modes was not available

at the time. Having witnessed the production of these figures, Napoleon

Bonaparte himself offered a prize for the best mathematical explanation of

this phenomenon. After a first wave of unsuccessful attempts, the correct

approach was finally discovered by the French mathematician and physicist

Sophie Germain in 1816.
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Apart from being a mathematical sensation, Germain also represents a

benchmark for the involvement of women in the academic world.

Nowadays Chladni figures have a wide array of applications, most notably in

the building of string instruments and quantum mechanics. As a violinist,

I first heard of Chladni figures in the context of lutherie. When playing an

instrument such as a violin, the front and back plates vibrate. Reminiscent

of Chladni’s original technique, a bow is used to set the plates in motion.

This time however, the bow contacts the strings which are attached to the

plate. The vibrations are carried through the bridge to the soundpost,

which then in turn causes point driven excitations in the plates.

Figure 2: Chladni figures on a violin plate [3]

Similar to Chladni’s experiments, the resonance of the plates form nodal

patterns. However, since a violin is a closed body and one is not likely to

spread a fine grain over it, the Chladni figures which a violin plate creates

while being played are rarely noticed or recognized as a significant sign of a

violins acoustic quality. While there do not seem to be particular Chladni

figures which are a sign for a good or bad violin, the Chladni figures a violin

produces can tell a luthier some important information about the back plate

of his instrument, as shall be discussed later in this paper.

To further understand how these figures form, it is of great utility to devise

a mathematical model describing the phenomenon. For this paper we will

use the two dimensional partial differential wave equation to predict the

formation of Chladni figures. Since the violin’s bottom plate is connected

to the top plate along the edges by so called ”ribs”, for our model, we will

assume that the edges of the membrane are fixed. This implies, that the

amplitude of the vibration is equal to zero at all times along the borders.
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Figure 3: Violin ribs [4]

As I have discovered throughout the writing of this paper, the shape of the

plate directly affects the shape of the Chladni figures. Unfortunately the

shape of a violin’s back plate is quite intricate. Additionally the plates are

not two dimensional, since they are curved outward. These two very signifi-

cant complications with the added fact that wood has a grain (and is there-

fore not isotropic) make obtaining a formula which consistently predicts the

patterns virtually impossible. Only numerical solutions are plausible in this

situation. However, since we are interested in analytical solutions in this

paper, we must make appropriate simplifications to our physical system, the

most important one being the shape of the plate. We will explore the fig-

ures on a circular and rectangular membrane with fixed borders, the other

simplifications and assumptions will be explained in the following section.
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2 Derivation of the Two Dimensional

Wave Equation

We begin by looking at a small portion of a vibrating membrane. It is

assumed that the membrane has no thickness, is fully elastic and is isotropic.

We obtain the following system:

Figure 4: x-axis of our system

In the figure above, T is the tension force acting upon the membrane and

the subscripts indicate in which direction the tension force is acting. Since

for the y-axis, the sketch is exactly the same, only the x-axis of the system is

shown in figure 4 for visualization purposes. Using the rules of trigonometry,

it follows that

Tx = sin(θ) · TΣx (1)

and

Ty = sin(θ) · TΣy. (2)

Similarly we can also say that

Tx+∆x = sin(θ +∆θ) · TΣx+∆x (3)

and

Ty+∆y = sin(θ +∆θ) · TΣy+∆y. (4)

Since there is no horizontal acceleration in this system, we can now focus

on the vertical acceleration of the membrane. The resulting tension force
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acting upon the section ∆x and ∆y respectively is equal do the difference

in the tension forces on each end. Hence

Tx,res = Tx+∆x − Tx (5)

and

Ty,res = Ty+∆y − Ty. (6)

According to Newtons second law of motion, F = ma, the sum of all forces

is equal to mass times acceleration. We find that

Tx,res + Ty,res = Tx+∆x − Tx + Ty+∆y − Ty = ma. (7)

Since mass is equal to linear density (ρ) times length (∆x) and acceleration

is equal to the second derivative of position (u) with respect to time, we

can rewrite equation (7) as

Tx+∆x − Tx + Ty+∆y − Ty = ρ ·∆x · ∂
2u

∂t2
. (8)

Inserting from equations (1) through (4) yields

sin(θ+∆θ)·TΣx+∆x−sin(θ)·TΣx+sin(θ+∆θ)·TΣy+∆y−sin(θ)·TΣy = ρ·∆x·∂
2u

∂t2
.

(9)

By dividing by ∆x on both sides, we obtain

sin(θ +∆θ) · TΣx+∆x − sin(θ) · TΣx + sin(θ +∆θ) · TΣy+∆y − sin(θ) · TΣy

∆x
= ρ·∂

2u

∂t2
.

(10)

Since ∆x ≈ ∆y when the difference is small, equation (10) takes the form

sin(θ +∆θ) · TΣx+∆x − sin(θ) · TΣx

∆x
+
sin(θ +∆θ) · TΣy+∆y − sin(θ) · TΣy

∆y
= ρ·∂

2u

∂t2
.

(11)

Because the derivative of a function is defined as lim∆x→0
f(x+∆x)−f(x)

∆x
, tak-

ing the limit as ∆x → 0 and ∆y → 0 gives us

Tx ·
∂(sin θ)

∂x
+ Ty ·

∂(sin θ)

∂y
= ρ · ∂

2u

∂t2
. (12)



8 A Mathematical Exploration of Chladni Figures

We can also approximate sin(θ) ≈ tan θ ≈ du
dx

≈ du
dy
, where u is the displace-

ment of the membrane at that point, for small angles θ. We can therefore

write

Tx ·
∂2u

∂x2
+ Ty ·

∂2u

∂y2
= ρ · ∂

2u

∂t2
. (13)

Also, Tx ≈ Ty for small angles θ. Equation (13) takes the form

T ·
!
∂2u

∂x2
+

∂2u

∂y2

"
= ρ · ∂

2u

∂t2
. (14)

Dividing by ρ and letting T
ρ
= α2 to facilitate future calculations, we finally

obtain the two dimensional wave equation

∂2u

∂t2
= α2

!
∂2u

∂x2
+

∂2u

∂y2

"
, (15)

Where α2 is equal to tension force over linear material density. Incidentally,

α is also equal to the propagation speed of the wave in the material in m/s.
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3 Chladni Figures on a Rectangular

Plate

3.1 Boundary Conditions for a Rectangular Plate

We now wish to solve the wave equation for a rectangular plate with fixed

ends.

l

h
y = h

x = l

(0,0)

(l, h)

x

y

We label the height of the plate in the y direction as h, and the length of

the plate in x direction as l.

Since we know that the plate is fixed along its borders, we can set up the

following boundary conditions:

u(0, y, t) = 0, (16)

u(l, y, t) = 0, (17)

u(x, 0, t) = 0, (18)

u(x, h, t) = 0. (19)

We also set the initial displacement to be 0 for all x and y at t = 0 and as

such, get the last boundary condition

u(x, y, 0) = 0. (20)
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3.2 Solving the Wave Equation for a Rectangular Plate

We first begin with the wave equation derived in section 2:

∂2u

∂t2
= α2

!
∂2u

∂x2
+

∂2u

∂y2

"
. (21)

We will first assume that u(x, y, t) can be written as X(x)Y (y)T (t). This

method is named separation of variables, since we separate u(x, y, t), which

is a function of x, y and t, into three different functions X, Y and T , where

each is dependent on one unique variable. Therefore, the two dimensional

wave equation becomes

X(x)Y (y)T ′′(t) = α2
#
X ′′(x)Y (y)T (t) +X(x)Y ′′(y)T (t)

$
. (22)

We can now factor out T (t) to obtain

X(x)Y (y)T ′′(t) = α2T (x)
#
X ′′(x)Y (y) +X(x)Y ′′(y)

$
. (23)

For simplicity, we will from now on use X, Y and T for X(x), Y (y) and

T (t) respectively. Furthermore, we can now divide the expression by XY T .

Thus we write

T ′′

T
= α2X

′′

X
+ α2Y

′′

Y
. (24)

We can rearrange this term to the form

T ′′

T
− α2Y

′′

Y
= α2X

′′

X
. (25)

Since both sides are equal, and not functions of the same variable, we can

say that both sides must be equal to the same constant, which we will name

σ. We have

T ′′

T
− α2Y

′′

Y
= σ (26)

and

α2X
′′

X
= σ. (27)

.
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We can rearrange equation (26) to obtain

α2Y
′′

Y
=

T ′′

T
− σ. (28)

Since both sides are equal, these again must both be equal to the same

constant, which we will name γ. Then

T ′′

T
− σ = γ (29)

and

α2Y
′′

Y
= γ. (30)

Hence we can say

T ′′

T
= γ + σ. (31)

We now have three second order homogenous ordinary differential equa-

tions: (27), (30) and (31).We can now solve each one of these equations

separately. Let us begin with equation (27). We can rearrange this ordi-

nary differential equation to the form

α2X ′′ − σX = 0. (32)

To avoid future complications, we will let σ = −λ2. Equation (32) becomes

α2X ′′ + λ2X = 0. (33)

Now we assume that erx, where r is a constant, is a valid solution to equation

(33). We can write

α2r2erx + λ2erx = 0. (34)

Dividing by erx on both sides yields

α2r2 + λ2 = 0. (35)

We can now easily solve equation (35) in respect to r using the quadratic

formula r = −b±
√
b2−4ac
2a

, where a = α2, b = 0 and c = λ2. Thus we find the

following values for r:

r1 =
iλ

α
, (36)
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r2 = − iλ

α
, (37)

where i is the imaginary unit, such that i2 = −1. We now know that both

e
iλ
α
x and e−

iλ
α
x are solutions to equation (33). According to the superpo-

sition principle [1] we can say that any linear combination of these two

linearly independent solutions will also be a solution of the equation. Thus,

the general solution (φ) of X(x) is

φ(x) = c1e
iλ
α
x + c2e

− iλ
α
x. (38)

Using the boundary condition (16), we can obtain the following equation

from equation (38):

φ(0) = c1e
0 + c2e

0 = 0. (39)

Since e0 = 1, we can say that

c1 + c2 = 0 (40)

and thus

c1 = −c2. (41)

Similarly, by using the boundary condition (17) on equation (38), we find

that

φ(l) = c1e
iλ
α
l + c2e

− iλ
α
l = 0. (42)

This equation is valid for c1 = c2 = 0. However, using these constants

would result in u(x, y, t) = 0 at all times for any x and y. This is clearly

not an accurate description of the physical system, since Chladni figures

would not form under these conditions. Therefore, since c1 = −c2, neither

c1 nor c2 are allowed to be 0. This is only the case if

e
iλ
α
l − e−

iλ
α
l = 0. (43)

We must now solve equation (43) with respect to λ. This can be done

by first splitting λ into its real and imaginary parts. To do this, we let

λ = µ+ iν. Equation (43) takes the form

e
iµ
α
le

ν
α
l − e−

iµ
α
le−

ν
α
l = 0. (44)
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Now, by using Eulers relation eikx = cos(kx) + i sin(kx), where k is a real

valued constant, as well as the fact that cos(−x) = cos(x) and sin(−x) =

− sin(x), we find that equation (44) becomes

!
cos

#µl
α

$
+ i sin

#µl
α

$"
e

ν
α
l −

!
cos

#µl
α

$
+ i sin

#µl
α

$"
e−

ν
α
l = 0. (45)

This term can be rearranged to the form

cos
#µl
α

$#
e

ν
α
l − e−

ν
α
l
$
+ i sin

#µl
α

$#
e

ν
α
l + e−

ν
α
l
$
= 0. (46)

This equation is only true if both

cos
#µl
α

$#
e

ν
α
l − e−

ν
α
l
$
= 0 (47)

and

i sin
#µl
α

$#
e

ν
α
l + e−

ν
α
l
$
= 0. (48)

Since e
ν
α
l + e−

ν
α
l in equation (48) is always bigger than 0, we can say that

i sin
#µl
α

$
= 0. (49)

Dividing by i on both sides yields

sin
#µl
α

$
= 0. (50)

For sin(µl
α
) to equal 0, µl

α
must be a whole multiple of π. Thus

µl

α
= nπ, n ∈ N. (51)

By rearranging for µ, we obtain

µ =
nπα

l
. (52)
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Using this µ in equation (47) gives us

cos(nπ)
#
e

ν
α
l − e−

ν
α
l
$
= 0. (53)

Since cos(nπ) is never 0, we can safely assume that

e
ν
α
l − e−

ν
α
l = 0. (54)

Equation (54) is only satisfied for ν = 0. Therefore

λ = µ+ 0i. (55)

Hence

λ = µ =
nπα

l
. (56)

We now return to equation (33). Substituting in λ, we obtain

α2X ′′ +
n2π2α2

l2
X = 0. (57)

By dividing by α2 on both sides, we find that

X ′′ +
n2π2

l2
X = 0. (58)

The simple solution ψ to this ordinary differential equation is of the form

ψ(x) = sin
#nπx

l

$
, (59)

since substituting equation (59) into equation (58) yields

−n2π2

l2
· sin

#nπx
l

$
+

n2π2

l2
· sin

#nπx
l

$
= 0. (60)

Since this a true statement, equation (60) is indeed a valid solution of

equation (32).

In an identical manner, we can also solve for Y (y). Here we will use m,

where m ∈ N, instead of n to denote the positive integer and h instead of

l to denote the height of the plate. Otherwise, ψ(y) is essentially the same

as ψ(x):

ψ(y) = sin
#mπy

h

$
. (61)
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In order to solve for ψ(t) we must return to equation (31). Since σ = −λ2,

σ = −n2π2α2

l2
(62)

and similarly,

γ = −m2π2α2

h2
. (63)

Substituting γ and σ into equation (31) yields

T ′′ +
#n2π2α2

l2
+

m2π2α2

h2

$
T = 0. (64)

This ordinary differential equation has the simple solution

ψ(t) = sin

!
tπα

%
n2

l2
+

m2

h2

"
. (65)

Notice that we have to choose sine and not cosine in order to satisfy the

boundary conditions (16), (18) and (20).

Finally, since u(x, y, t) = X(x)Y (y)T (t) = ψ(x)ψ(y)ψ(t), we obtain the

solution

u(x, y, t) = sin
#nπx

l

$
sin

#mπy

h

$
sin

!
tπα

%
n2

l2
+

m2

h2

"
, (66)

where n is the number of nodes in x direction without counting the node at

x = 0, m is the number of nodes in y direction without counting the node

at y = 0, l is the length of the plate in x direction and h is the height of

the plate in y direction. For a complete description of the physical system,

our solution would have to take the form of a linear combination of all

particular solutions represented by equation (66). However, since we are

only looking for the natural modes of the plate, which are represented by

the particular solutions (66), our solution is sufficient for predicting the

formation of Chladni figures.
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4 Nodes on a Rectangular Plate

4.1 Nodes in the x Direction

As previously discussed, Chladni figures form where u(x, y, t) = 0. Since our

equation (66) describing the formation of Chladni figures on a rectangular

plate is composed of three parts ψ(x), ψ(y) and ψ(t) which are multiplied

together, u(x, y, t) will equal 0 when any one of these parts equals 0. We

can therefore separate the nodes of each part and look at them individually.

We will start with the nodes in the x direction. We are therefore searching

for the values for which ψ(x) = 0:

ψ(x) = sin
#nπx

l

$
= 0. (67)

For this equation to be true, nπx
l

must equal a whole multiple of π. Thus

we write

nπx

l
= pxπ, px ∈ N, px ≤ n. (68)

Dividing by π on both sides and rearranging for x yields

x =
lpx
n

. (69)

This tells us that nodes will occur when x is a whole multiple of l
n
. To

illustrate this with an example, we use a plate with the length l = 5m and

we will let n = 4:

5
4

10
4

15
4

5

h
y = h

(0,0)

(5, h)

x

y

The value px in equation (69) is a sort of numerator for the nodes. px = 0

gives us the node at x = 0, px = 1 gives us the node at x = 5
4
m and so on,

until px = 4 = n gives us the node at x = 5m.
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4.2 Nodes in the y Direction

In identical manner to the x coordinate nodes, we can say that the y coor-

dinate nodes will occur when ψ(y) = 0. Following the same steps as in the

previous subsection gives us y coordinate nodes when

y =
hpy
m

, py ∈ N, py ≤ m. (70)

Similar to the x coordinate nodes, y coordinate nodes occur when y is a

whole multiple of h
m
. As an example, we will let h = 3m and m = 5:

l

3
5

6
5

9
5

12
5

3

x = l

(0,0)

(l, 3)

x

y

Note that py is again a sort of numerator for the nodes. py = 0 gives us

the node at y = 0, py = 1 gives us the node at y = 3
5
m and so on, until

py = 5 = m gives us the node at y = 3m.

4.3 Nodes in the t Direction

Despite seeming quite counter-intuitive, in the same way that we can find

nodes for the x and y coordinates, there are also nodes for the t-coordinates,

where the displacement of the entire plate is 0. Analogously to the x and

y nodes, t nodes occur when φ(t) = 0. We can say

sin

!
tαπ

%
n2

l2
+

m2

h2

"
= 0. (71)

Thus

tπα

%
n2

l2
+

m2

h2
= ptπ, pt ∈ N. (72)

Squaring and dividing by π2 on both sides yields
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t2α2
#n2

l2
+

m2

h2

$
= p2t . (73)

Rearranging for t2 gives us

t2 = p2t
l2h2

n2α2h2 +m2α2l2
. (74)

This then gives us the following expression for t

t = pt

%
l2h2

n2α2h2 +m2α2l2
. (75)

This equation tells us that ψ(t) = 0 when t is a whole multiple of
&

l2h2

n2α2h2+m2α2l2
.

Now what does this actually mean for the physical system? If we think of a

specific point on the plate with the coordinates (x, y) such that x ∕= lpx
n

and y ∕= hpy
m
, then u(x, y, t) will equal 0 only when t is a multiple of&

l2h2

n2α2h2+m2α2l2
. Essentially this expression for which ψ(t) = 0 is analo-

gous to half of the period of the function drawn out by the point (x, y)

through time. We can therefore say that the period (T ) of the oscillation

of the plate is

T = 2

%
l2h2

n2α2h2 +m2α2l2
. (76)

Since the frequency of the oscillation (f) is equal to 1
T
equation (76) takes

the form

f =
α

2lh

√
n2h2 +m2l2. (77)

This tells us that for a specific choice of the positive integers n and m,

the propagation speed of the wave α and the length l and height h of the

plate, there is a specific frequency at which the Chladni figures will form,

as represented by equation (77).
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5 Chladni Figures on a Circular Plate

5.1 Boundary Conditions for a Circular Plate

In order to solve the wave equation for a circular plate we have the elegant

solution of converting the wave equation into polar coordinates and solving

it accordingly. However in this section, we will solve the wave equation

for a circular plate by approximating a circle with polygons in the regular

Cartesian coordinate system. We shall later compare our solutions with

those of the polar wave equation.

We will only work with polygons with 2n sides to keep symmetry amongst

all quadrants. We will also define the point (0, 0) as the center of each

polygon. To illustrate how we will proceed, we shall use the example of a

23-gon also known as an octagon.

(R1)

(R2)(R3)

(R4)

(R5)

(R6) (R7)

(R8)

x

y

We shall now only focus on the first quadrant of the octagon.

r

r

(R1)

(R2)

a

a

r x

y

We now wish to describe the position of the corner-points of the polygon

in dependance of the bisector r and the amount of corners the 2n-gon has,

which is dependent on n. First we will describe the angle θ (R1, 0, x) using

n. Since 360◦ is equivalent to 2π radians, we can say that 2θ times the

amount of polygons, 2n, is equal to one entire rotation:
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2θ · 2n = 2π. (78)

By dividing by 2n, we obtain

2θ =
2π

2n
. (79)

This gives the following expression for θ:

θ =
π

2n
. (80)

Now we describe the distance a using r and θ = π
2n
. Since cos(θ) is defined

as r
a
, we can describe the legs of the triangle, a, in the following way:

a =
r

cos(θ)
=

r

cos( π
2n
)
. (81)

We now wish to find the coordinates (Rkx, Rky) of each point Rk. Noticing

that the length a is the radial distance between (0, 0) and the point Rk,

we can divide a into its vertical and horizontal components Rkx and Rky.

These values are a function of the counterclockwise angle between the x

axis and a. Since we have the angle 1 · θ for k = 1, 3 · θ for k = 2, ect.,

this angle (Rk, 0, x) will always be a odd multiple of θ. We therefore write

(2k − 1)θ to denote this angle. This is also the reason that we count Rk in

the counterclockwise direction starting from the closest point to the x axis

in the first quadrant.

Rkx = cos
#
(2k − 1)θ

$
· a, (82)

Rky = sin
#
(2k − 1)θ

$
· a. (83)

We now insert θ from equation (79) and a from equation (81). It follows

that

Rkx = cos
#
(2k − 1)

π

2n

$
· r

cos( π
2n
)
, (84)

Rky = sin
#
(2k − 1)

π

2n

$
· r

cos( π
2n
)
. (85)

As such, each vertex of the polygon Rk can be described by the coordinate

Rk =

!
cos((2k − 1)

π

2n
) · r

cos( π
2n
)
, sin((2k − 1)

π

2n
) · r

cos( π
2n
)

"
. (86)
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For simplicity, we will refer to these coordinates as Rkx and Rky respectively

in future calculations.

5.2 Solving the Wave Equation for a Circular Plate

To find fitting boundary conditions for the polygon approximation method,

we shall consider only the legs of the triangles in our polygon. These lines

can be considered to be fine strips, which trace out the shape of the polygon

and the radial lines connecting (0, 0) with each corner. Knowing that each

corner and the center of the polygon are fixed, we can set up the following

boundary conditions for these thin strips:

u(Rkx, y, t) = 0, (87)

u(x,Rky, t) = 0, (88)

u(0, y, t) = 0, (89)

u(x, 0, t) = 0. (90)

We also set the initial displacement to be 0:

u(x, y, 0) = 0. (91)

Using these boundary conditions, we can solve the wave equation for fine

strips in two dimensions. Analogous to the procedure shown in section 3, we

can separate u(x, y, t) into X(x)Y (y)T (t). Following the same derivation as

for equation (38), we can start directly from the general solution of X(x)

φ(x) = c1e
iλ
α
x + c2e

− iλ
α
x. (92)

Applying the boundary condition (89) we can say

c1 + c2 = 0. (93)

Similarly, by using the boundary condition (87) on equation (92), we obtain
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φ(l) = c1e
iλ
α
l + c2e

− iλ
α
l = 0. (94)

Similar to equation (42), this equation is valid for c1 = c2 = 0. However

using these constants would result in u(x, y, t) = 0 at all times for any x

and y, which we can clearly see is not the case for the physical system, since

Chladni figures would not form. Moreover, since c1 = −c2, neither c1 nor

c2 are allowed to be 0. This is only the case if

e
iλRkx

α − e−
iλRkx

α = 0. (95)

We can see the similarities between equation (95) and equation (43) hence

it is no surprise that the solution to this equation is very similar to that

derived in section 3. Following the same process as in section 3 we find the

following solution for X(x):

ψ(x) = sin
#gπx
Rkx

$
, g ∈ N (96)

We can also solve for Y (y) in an identical manner. Unlike section three, we

also use g to denote the positive integer for ψ(y) because the plate is fully

symmetrical. Therefore the number of nodes in the y direction is the same

as in the x direction. We also use the coordinate Rky since we are looking

at the y component of the equation. Otherwise, ψ(y) is essentially the same

as ψ(x):

ψ(y) = sin
#gπx
Rky

$
. (97)

Using the same method as in section three, we also obtain the following

solution for T (t):

ψ(t) = sin

!
tπα

'
g2

R2
kx

+
g2

R2
ky

"
. (98)

We can very clearly see in the equation above how the solution implies

symmetrical x and y nodes, since we only have one positive integer g. We

hence have the following expression for T (t):

ψ(t) = sin

!
tgπα

'
1

R2
kx

+
1

R2
ky

"
. (99)

This leads to the solution

uk(x, y, t) = sin
#gπx
Rkx

$
sin

#gπy
Rky

$
sin

!
tgπα

'
1

R2
kx

+
1

R2
ky

"
. (100)
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SubstitutingRkx andRky from equations (84) and (85) gives us the following

system of solutions:

uk(x, y, t) = sin
# gπx

cos((2k − 1) π
2n
) · r

cos( π
2n

)

$
sin

# gπy

sin((2k − 1) π
2n
) · r

cos( π
2n

)

$
·

sin

!
tgπα

'
1

[cos((2k − 1) π
2n

· r
cos( π

2n
)
]2
+

1

[sin((2k − 1) π
2n
) · r

cos( π
2n

)
]2

"
.

(101)

This equation describes the behaviour of each individual radial strip. De-

pending on what values n and r will take, each strip between (0, 0) and

the points Rk ends up having a different equation, depending on k, which

describes it. As we go to an infinite polygon, the strips get closer and closer

together, to become one continuous plate when the polygon becomes a cir-

cle. We do not obtain an analytical solution for the formation of the chladni

figures. However by plotting the values for very big polygons, we can get

quite close to having the same output as an analytical solution for a circular

plate. Unfortunately, analytical solutions in cylindrical coordinates do not

involve regular sinusoid functions, which implies, that the nodes would not

be evenly spaced between the center and edge of the plate. We shall discuss

the cylindrical wave equation in sections 6 and 7.

5.3 Nodes on a Circular Plate

Solving for the nodes on a circular plate is essentially the same as on a

rectangular plate. We can interpret the solution (101) as the wave equation

for 2n different rectangles, whose edges are Rkx and Rky. We do however

only consider the strip joining (0, 0) and (Rkx, Rky), since this is what the

boundary conditions take into account. We shall look at the first quadrant

of the example: n = 4, r = 1m and g = 3.

1

1

(R1)

(R2)

(R3)

(R4)

x

y
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For the arbitrarily chosen k = 3, the boundary conditions used in section

5.2 would, in theory, solve the wave equation for a rectangular plate of the

dimensions R3x by R3y. Remember however, that we chose only to define

the fine strip spanning from the origin to (R3), since this is the situation for

which these boundary conditions are actually valid for the physical system.

Solving for the nodes in the same manner as in section 4 yields that x-nodes

form when

x =
Rkxp

g
, p ∈ N, p ≤ g (102)

and y-nodes form when

y =
Rkyp

g
, p ∈ N, p ≤ g. (103)

Notice again that the same positive integer g is used for both descriptions

of the nodal patterns, since we cannot have a different number of x and y

nodes. We now return to the previous example of n = 4, r = 1m and g = 3.

We now choose k = 3. According to equations (102) and (103), this will give

us nodes at x ≈ 0m, 0.19m, 0.38m, 0.57m and y ≈ 0m, 0.28m, 0.57m, 0.85m.

0.19 0.38 0.57 1

0.28

0.57

0.85

1
(R3)

x

y

This now gives us the following points for which u(x, y, t) = 0: (0, 0),

(0.19, 0.28), (0.38, 0.57) and R3 ≈ (0.57, 0.85). Doing this for all Rk for

bigger and bigger polygons results in these points slowly forming continuous

concentric circles around the origin. As n goes to infinity the radii of these

circles approach rp
g
.

5.4 t - Nodes on a Circular Plate

Since ψ(t) differs slightly from equation (65) for the circular plate, we shall

more rigorously discuss at the nodes as a function time. We begin as in

section 3:

ψ(t) = sin

!
tgπα

'
1

R2
kx

+
1

R2
ky

"
= 0. (104)
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For ψ(t) = 0 the contents of the sine function must be equal to a whole

multiple of π. We write

tgπα

'
1

R2
kx

+
1

R2
ky

= ptπ, pt ∈ N. (105)

Dividing by π on both sides and rearranging for t yields:

t =
pt

gα
&

1
R2

kx
+ 1

R2
ky

, (106)

which we can also write as:

t =
ptRkxRky

gα
&

R2
kx +R2

ky

. (107)

Inserting the full values for Rkx and Rky gives us

t =
pt cos((2k − 1) π

2n
) · r

cos( π
2n

)
sin((2k − 1) π

2n
) · r

cos( π
2n

)

gα
&

[cos((2k − 1) π
2n
) · r

cos( π
2n

)
]2 + [sin((2k − 1) π

2n
) · r

cos( π
2n

)
]2

(108)

Similarly to section 4, the reciprocal of this equation should tell us the

frequency at which the plate would have to vibrate in order to create the

radial nodes on our thin strip. Unfortunately each plate has a different side

length (Rkx) and height (Rky), which gives us different frequencies for each

string. This does not make logical sense, since they theoretically all have

the same initial conditions, length and constant α. Since a circle is formed

as the number of vertices in the 2n-gon goes to infinity, we would like to let

n go to infinity in equation (108). When we let n go to infinity, four strips

will be vibrating along the x and y axes. This results in (Rkx) or (Rky)

respectively to become zero. This effectively results in all the x or y nodes

to be compressed down to one single node, along the corresponding axis.

For this to occur, the frequency of the vibration would have to be infinitely

large. Therefore our solution does not apply for ψ(t). Thus, equation

(101) is incomplete and does not fully describe the physical system. To

get an appropriate solution which can also predict the frequency at which

the patterns form, we have to solve the one dimensional wave equation for

a string fixed at x = 0 and x =
&

R2
kx +R2

ky. We begin with the one

dimensional wave equation:

∂2u

∂t2
= α2∂

2u

∂x2
, (109)

where we have the following boundary conditions:
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u(0, t) = 0, (110)

u
#&

R2
kx +R2

ky, t
$
= 0, (111)

u(x, 0) = 0. (112)

To solve equation (109) we will again use the separation of variables tech-

nique. We assume that u(x, t) can be expressed as the product of two

functions X(x) and T (t) which are both only dependent on one unique

variable. We will write T (t) as T and X(x) as X. The one dimensional

wave equation becomes

T ′′X = α2TX ′′. (113)

Dividing by T and X on both sides gives us

T ′′

T
= α2X

′′

X
. (114)

Analogously to section 3 and since both sides of this equation are equal,

each side must be equal to the same constant, which we will again call σ.

We find two ordinary differential equations:

T ′′

T
= σ, (115)

α2X
′′

X
= σ. (116)

Since equation (116) is identical to equation (27) it comes as no surprise

that they share the same general solution

φ(x) = c1e
iλ
α
x + c2e

− iλ
α
x. (117)

Again in similar fashion to section 3, we use the boundary condition (110)

on equation (117). It follows that

c1 + c2 = 0. (118)

Subsequently, applying boundary condition (111) results in

φ
#&

R2
kx +R2

ky

$
= c1e

iλ
√

R2
kx

+R2
ky

α + c2e
−

iλ
√

R2
kx

+R2
ky

α = 0. (119)
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To avoid clutter, we will write
&

R2
kx +R2

ky as δ. Then

φ(δ) = c1e
iλδ
α + c2e

− iλδ
α = 0. (120)

Notice that equation (120) is essentially the same as equation (42). As

such, it is not surprising that their solution is also very similar. The only

difference is that l has become δ. We find that

ψ(x) = sin
#gπx

δ

$
= 0, g ∈ N. (121)

We also obtain σ = −n2π2α2

δ2
analogously to equation (62). We can insert σ

into equation (115). Hence

T ′′

T
= −g2π2α2

δ2
. (122)

Thus

T ′′ +
g2π2α2

δ2
T = 0. (123)

This ordinary differential equation has the simple solution

ψ(t) = sin
#gπαt

δ

$
. (124)

To obtain a more complete solution for our physical system we can now

replace ψ(t) in equation (100) with equation (124). We have

u(x, y, t) = sin
#gπx
Rkx

$
sin

#gπy
Rky

$
sin

#gπαt
δ

$
. (125)

Finally, by inserting the full values for δ, Rkx and Rky, we find that our

solution for the circular plate is now of the form

u(x, y, t) = sin
# gπx

cos((2k − 1) π
2n
) · r

cos( π
2n

)

$
sin

# gπy

sin((2k − 1) π
2n
) · r

cos( π
2n

)

$
·

sin

!
gπαt&

(cos((2k − 1) π
2n
) · r

cos( π
2n

)
)2 + (sin((2k − 1) π

2n
) · r

cos( π
2n

)
)2

"
. (126)

This is a hybrid of a one dimensional and two dimensional solution, which

gives the placement of the nodes as well as the frequency at which they

occur. This can be calculated by letting the new ψ(t) equal 0. Thus, the

argument of the sine function must be a whole multiple of π. We write
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gπαt&
R2

kx +R2
ky

= ptπ, pt ∈ N. (127)

Dividing by π and rearranging for t yields

t =
pt
&

R2
kx +R2

ky

gα
. (128)

As in section 4.3, this equation gives us the following period T :

T = 2

&
R2

kx +R2
ky

gα
. (129)

Thus, the frequency at which the Chladni figures form is

f =
gα

2
&

R2
kx +R2

ky

. (130)

As we let n go to infinity, the 2n-gon approaches a circle. In this case&
R2

kx +R2
ky becomes r. Therefore the frequency at which the Chladni

figures form for a circular plate would be

f =
gα

2
&

R2
kx +R2

ky

=
gα

2r
. (131)
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6 Polar Form of the Two Dimensional

Wave Equation

The more common method for solving the wave equation for a circular plate

is to first convert the wave equation into its polar form.

Figure 5: Correlation between Cartesian and Polar coordinates [5]

We begin with the normal wave equation in cartesian coordinates:

1

α2

∂2u

∂t2
=

∂2u

∂x2
+

∂2u

∂y2
. (132)

We now wish to replace the function u(x, y, t) by it’s polar counterpart

u(r, θ, t), where

r =
(

x2 + y2, (133)

θ = arctan
#y
x

$
, (134)

x

r
= cos(θ), (135)

y

r
= sin(θ). (136)

Since we know that ∂u
∂r

depends on x and y, we can use the chain rule in

Leibniz notation [7] to write

∂u

∂r
=

∂u

∂x

∂x

∂r
+

∂u

∂y

∂y

∂r
. (137)

Using equations (135) and (136) we find that
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∂u

∂r
=

∂u

∂x
cos(θ) +

∂u

∂y
sin(θ). (138)

We can also write ∂u
∂θ

in the same way using the chain rule:

∂u

∂θ
=

∂u

∂x

∂x

∂θ
+

∂u

∂y

∂y

∂θ
. (139)

We also know that

∂x

∂θ
=

∂(r cos(θ))

∂θ
= −r sin(θ) (140)

and

∂y

∂θ
=

∂(r sin(θ))

∂θ
= r cos(θ). (141)

As such, equation (139) takes the form

∂u

∂θ
=

∂u

∂x
(−r sin(θ)) +

∂u

∂y
r cos(θ). (142)

We shall now use the following notation to denote partial derivatives:

∂u

∂x
= ux, (143)

∂u

∂y
= uy, (144)

∂u

∂r
= ur, (145)

∂u

∂θ
= uθ. (146)

Solving equations (138) and (142) for ux yields the following system of

equations:

ux =
ur − uy sin(θ)

cos(θ)
(147)

and

ux =
uθ − uyr cos(θ)

−r sin(θ)
. (148)

Since the right side of these two equations are both equal to ux, they must

consequentially also be equal to each other. We obtain
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uθ − uyr cos(θ)

−r sin(θ)
=

ur − uy sin(θ)

cos(θ)
. (149)

Rearranging for uy gives us

ur sin(θ)

sin2 θ + cos2 θ
+

1

r

uθ cos(θ)

sin2 θ + cos2 θ
= uy. (150)

Since sin2 θ + cos2 θ = 1, equation (150) becomes

uy = ur sin(θ) +
1

r
uθ cos(θ). (151)

We now insert this equation into equation (148). We find that

ux = ur cos(θ)−
1

r
uθ sin(θ). (152)

Using the chain rule again, we can now write the second derivatives in the

following way:

uxx =
∂ux

∂r

∂r

∂x
+

∂ux

∂θ

∂θ

∂x
. (153)

Observe the relation

∂θ

∂x
=

∂ arctan( y
x
)

∂x
= − y

r2
= −sin(θ)

r
. (154)

Similarly,

∂θ

∂y
=

cos(θ)

r
. (155)

We can also rewrite ∂r
∂x

and ∂r
∂y

as

∂r

∂x
= cos(θ), (156)

∂r

∂y
= sin θ. (157)

Using the relations above and equation (152), equation (154) takes the form

uxx =
∂(ur cos(θ)− 1

r
uθ sin(θ))

∂r
cos(θ)−

∂(ur cos(θ)− 1
r
uθ sin(θ))

∂θ

sin(θ)

r
.

(158)

Taking the derivatives with respect to r and θ and expanding yields
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uxx = urr cos
2 θ−2

r
urθ sin(θ) cos(θ)+

2

r2
uθ sin(θ) cos(θ)+

1

r
ur sin

2 θ+
1

r2
uθθ sin

2 θ.

(159)

Similarly, uyy is given by

uyy = urr sin
2 θ+

2

r
urθ sin(θ) cos(θ)−

2

r2
uθ sin(θ) cos(θ)+

1

r
ur cos

2 θ+
1

r2
uθθ cos

2 θ.

(160)

We now introduce the Laplace operator in two dimensions ∇2, which is

defined as

∇2 = uxx + uyy. (161)

We can insert equations (159) and (160) into the Laplace operator. We find

that

∇2 = urr cos
2 θ−2

r
urθ sin(θ) cos(θ)+

2

r2
uθ sin(θ) cos(θ)+

1

r
ur sin

2 θ+
1

r2
uθθ sin

2 θ

+urr sin
2 θ+

2

r
urθ sin(θ) cos(θ)−

2

r2
uθ sin(θ) cos(θ)+

1

r
ur cos

2 θ+
1

r2
uθθ cos

2 θ.

(162)

This simplifies down to

∇2 = urr(cos
2 θ+sin2 θ)+

1

r
ur(cos

2 θ+sin2 θ)+
1

r2
uθθ(cos

2 θ+sin2 θ). (163)

Again using cos2 θ + sin2 θ = 1, we can write

∇2 = urr +
1

r
ur +

1

r2
uθθ. (164)

Inserting this into the wave equation yields

utt = α2(urr +
1

r
ur +

1

r2
uθθ) (165)

or

∂2u

∂t2
= α2

!
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2

"
. (166)

We have now obtained the wave equation in polar coordinates. A solution

method shall be shown in the following section.
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7 Application of the Polar Wave

Equation on a Circular Plate

We have briefly mentioned the incompleteness of our approximated solution

for a circular plate at the end of section 5. We now wish to show the

inaccuracy of our approximated solution mathematically. We begin with

the polar wave equation:

∂2u

∂t2
= α2

!
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2

"
. (167)

Where u(r, θ, t) is a function of the radius r, the angle θ and time t. To

disprove section 5, it suffices to consider only the radially symmetrical solu-

tions. We can therefore discard the part of the equation that is dependent

on θ. The wave equation becomes

∂2u

∂t2
= α2

!
∂2u

∂r2
+

1

r

∂u

∂r

"
. (168)

Analogously to section 3.2, we shall now separate the variables by assuming

that u(r, t) can be written as two separate functions: R(r)T (t). We shall

write R(r) as R and T (t) as T . It follows that

1

α2
RT ′′ = R′′T +

1

r
R′T. (169)

By rearranging terms, we can write:

1

α2

T ′′

T
=

R′′

R
+

1

r

R′

R
. (170)

Since both sides depend only on one unique variable, we can say that both

sides are equal to the same constant, which we shall call −λ2. We obtain

the following two ordinary differential equations:

T ′′ + Tλ2α2 = 0 (171)

and

R′′ +
1

r
R′ + λ2R = 0. (172)

Equation (171) is an equation which we have already seen in the previous

sections: its solutions are sinusoids, which are not further interesting for

our proof. Equation (172) however is not solvable analytically. We will
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therefore write our solution in the form of an infinite polynomial series

around r = 0. To solve this equation, we will be somewhat following the

Frobenius method, since our function is not defined at r = 0 due to the

term 1
r
. A normal series solution would therefore not be fitting. Now, let

us assume, that the solution of equation (172), takes the form

R(r) =
∞)

k=0

ak · rk+g, k ∈ N, g ∈ N. (173)

In this equation, k and g are positive integers. We obtain an infinite polyno-

mial describing our solution. We must now establish the first two derivatives

of this function:

R′(r) =
∞)

k=0

(k + g)ak · rk+g−1, (174)

R′′(r) =
∞)

k=0

(k + g − 1)(k + g)ak · rk+g−2. (175)

We can now insert these derivatives into equation (172):

∞)

k=0

(k+ g− 1)(k+ g)ak · rk+g−2+
∞)

k=0

(k+ g)ak · rk+g−2+λ2

∞)

k=0

ak · rk+g = 0.

(176)

This can be rewritten and shortened to the form

∞)

k=0

(k+g−1)(k+g)ak ·rk−2+
∞)

k=0

(k+g)ak ·rk−2+λ2

∞)

k=2

ak−2·rk−2 = 0. (177)

Now by calculating the values for k = 0 and k = 1 it follows that

0 = ((g − 1)g + g)a0r
−2 + ((g + 1)g + g + 1)a1r

−1

+
∞)

k=2

[((k + g − 1)(k + g) + k + g)ak + λ2ak−2]r
k−2. (178)

For this to be true, each of these terms must separately be 0. We obtain

the following equation:

a0r
−2((g − 1)g + g) = 0, (179)

which yields that g = 0. This in turn tells us that a1 must also equal 0.

Inserting our new knowledge into the last part of equation (178) yields the

following equation:
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((k − 1) + k)ak + λ2ak−2 = 0, (180)

which becomes

k2ak + λ2ak−2 = 0. (181)

Thus we find the following recursive condition for our series:

ak = −ak−2
λ2

k2
. (182)

Now we will let a0 = 1, since stretching and moving the function does not

have an effect on its general nature, and plot the first few terms.

a2 = −λ2

22
,

a4 = +
λ4

22 · 42 ,

a6 = − λ6

22 · 42 · 62 .

We can write this recurring pattern as

ak =
λ2k(−1)k
*k

j=1(2j)
2
.

Since
*k

j=1(2j)
2 = (2k · k!)2, our solution to equation (172) is of the form

R(r) =
∞)

k=0

(−1)k

(2k · k!)2 (rλ
2)k. (183)

We still need to make a small adjustment in order to fulfill the boundary

condition R(0) = 0:

R(r) =
∞)

k=0

(−1)k

(2k · k!)2 ((r +Q1)λ
2)k, (184)

where Q1 is the first root of the function. It lies at approximately 5.783 for

λ = 1. If we graph this function we obtain the following wave:
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Figure 6: Graph of equation (184) (x-axis: radius r, y-axis: displacement

u)

While equation (184) is certainly not a complete solution to the polar wave

equation, it sufficiently demonstrates that the roots of the equation are not

evenly spaced between the center and edge of the plate. It then follows

that the Chladni figures would not be evenly spaced concentric circles. The

nodes would be more densely packed toward the center of the plate and less

dense toward the rim. Thus our model from section 4, which considered

the plate to be an infinite agglomeration of strings, has been shown to be

imprecise.
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8 Lessons from the Mathematics

As seen in the previous sections, the mathematics describing the nodal fig-

ures of Chladni patterns are quite complex. Even simple shapes, such as

circles, do not have fully analytical solutions. However, our calculations still

predict some interesting behaviors of the plate. On the rectangular mem-

brane, the patterns we obtain are n by m grids. It is surprising, given the

intricate nature of Chladni figures, that one would obtain such simple and

symmetrical patterns. When we know the solution, however, it intuitively

makes sense that a membrane would vibrate in such a way.

Figure 7: Graph given by equation (66), n = m = 5

For the figure 7, we must remember that the system moves over time.

Therefore, it is necessary to imagine the oscillation of each rectangle in the

grid through time to fully visualize equation (66).

Similarly, when we observe the frequencies at which the figures form (77)

as m and n step through integer values, the points gather on the plane

depicted by the three dimensional function:

f(n,m) =
α

2lh

√
n2h2 +m2l2 (185)

As we will observe below, we see a linear and symmetrical behavior of the

rectangular membrane. As expected, the symmetry of the nodes is reflected

in the frequencies at which they form. While the function (185) is depicted

as continuous below, it is important to remember that n and m only take

on whole integer values. Therefore only certain points of the plane in figure

8 are actually the frequencies at which the nodes occur. For simplicity in

visualization we will choose α = h = l = 1.
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Figure 8: Plane of all vibrational points for a rectangular membrane

However, when we consider the case of the circular plate, the solution is

much less intuitive. The solution attained through the procedure shown in

section 5 is a seemingly logical one since, similar to the rectangular plate,

the nodes are symmetrical and evenly spaced out. However, as shown in

section 7, we unfortunately cannot assume that the Chladni figures on a

circular membrane are symmetrical in this aspect.
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9 Experimental Results

Having been concerned with the mathematical side of Chladni figures for the

main part of this paper, it is also important to gather experimental evidence

to compare to our theoretical findings. In this section, the steps I took to

create Chladni figures are presented. The main goal was to experiment on

systems which try to mimic our theoretical models. This means that instead

of the rectangular plate, I opted for a rectangular frame with a membrane

streched over it. This configuration was chosen over the classical metal

plate, as used by Chladni, for two main reasons: Firstly, it is much easier

to fix the boundaries of an elastic membrane and secondly, the membrane

vibrates more freely, which makes agitating it possible with a loudspeaker.

The vibrations on a metal plate would have to be point driven in order to

produce enough resonance for Chladni figures to form, which would not fit

our model. For the circular membrane, we used a similar frame in circular

form with an attachment point in the center to represent not only the fixed

border but also the fixed center point.

Figure 9: 3D-printed frames

To manufacture the frames shown above, I used the 3D design software

”Shapr-3D” in order to create the models. These were then printed on

my Prusa i3 MK3 3D printer in yellow and green PLA plastic. Finally a

rubber sheet was stretched over the frames and some salt was sprinkled

on the membrane. By then placing a speaker, connected to a frequency

generator, under the frames, I was able to agitate the membranes which

would then hopefully produce Chladni figures.

Figure 10: My only successful Chladni figure with the 3D-printed frames
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The process was partially succesful. Unfortunately, the figures formed were

very irregular due to the mass of the salt, which would lead to the salt

accumulating in certain areas and dampening the vibrations at those points,

thus creating unwanted nodes. Unfortunately, finer powders such as flour

and powdered sugar also exhibited this behavior. Another problem was to

stretch the membrane evenly over the frame to obtain a uniform surface

tension. Therefore, I was unable to reliably create useful Chladni figures

using this method.

Figure 11: A model example of uneven tensioning

To solve the problem of uniform surface tension, I next attempted to use a

drum as the vibrating surface. By weighing down the frames on the top of

the drum, I would create the fixed boundaries from our theoretical models.

Unfortunately, the mass of the grains still influenced the outcome of the

experiment.

I did however notice that at the frequencies at which the nodes should

occur according to equation (185), the pitch made by the vibrating drum

head would grow considerably louder, suggesting resonance and thus, the

formation of nodes. I therefore attempted to use a stretched plastic bag

instead of the rubber membrane. Since the plastic bag membrane was

lighter and easier to excite, the speaker had little trouble moving the sand

grains. Thus, after many hours of trial and error, I obtained the Chladni

figures shown in the following section.
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9.1 Results from the Circular Membrane

Figure 12: Figures obtained on the circular membrane

As we can observe in the above figure, the Chladni figures turned out quite

nicely on the drumhead. Unfortunately, it is difficult to predict most of the

figures above using our mathematical model. This may be attributed to

external factors, which are not accounted for in our formula. Furthermore,

if we assume the mode for g = 2 to be correct, we can calculate the wave

propagation speed α using equation (131) where fg denotes the number of

the mode:

fg =
gα

2r
, (186)

which, rearranged for α, becomes:

α =
2fgr

g
. (187)

Since we can measure the values f2 = 148Hz, r = 0.15m and g = 2 we

obtain:

α =
2 · 148Hz · 0.15m

2
= 22.2

m

s
. (188)

We can now calculate the expected frequencies for g = 3 and g = 4:
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f3 = 222Hz (189)

and

f4 = 296Hz (190)

When we compare these frequencies to the ones of the suspected third and

fourth mode in figure 12, we will see that they do not coincide, which dis-

cards the supposition. However, we did still obtain a clean second mode

which fits with our model for g = 2. These results are explainable both

through external factors, such as uneven surface tension and non isotropic

behavior (among others), and through an incompleteness in my mathemat-

ical model from section 5, which has already been shown to be imprecise in

section 7. We have also not considered figures which are not rotationally

symmetric.

Figure 13: Comparison of the theoretical and experimental Chladni figures

according to section 5
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9.2 Results from the Rectangular Membrane

Figure 14: Figures obtained on the rectangular membrane

Although we also cannot describe a large part of the nodal figures on a rect-

angular plate using the mathematical model for a rectangle, our predictions

are significantly better than on the circular plate. Similar to the previous

section, we can figure out the wave propagation speed α by assuming that

one of our figures is correct through equation (186):

fn,m =
α

2lh

√
n2h2 +m2l2 (191)

By assuming that our results for f5,2 are correct, we obtain:

α ≈ 37.47
m

s
(192)

This gives us the following interesting predictions:

f1,2 ≈ 220Hz (193)

f4,1 ≈ 406Hz (194)

f4,2 ≈ 440Hz (195)

f4,4 ≈ 558Hz (196)
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f6,1 ≈ 599Hz (197)

If we compare these values with figure 14, we can see that, despite not being

precise, the frequencies are in a similar range as the frequencies shown.

However for (197), our guess that this figure has the mode n = 4,m = 4

is probably wrong. The imprecision of our results is certainly the direct

consequence of both an incomplete model and external factors influencing

the experiment, which have not been accounted for in the model.

Figure 15: Comparison of the theoretical and experimental Chladni figures

on a rectangular membrane

10 Chladni Figures in Lutherie

As hinted in the introduction, Chladni figures find a very niche application

in the world of violin construction [Appendix]. When a violin resonates, the

top and bottom plates vibrate. If one were to spread sand on the plates,

one would observe nodal patterns while playing the instrument. In our

calculations, we have had to make many approximations in areas such as

isotropy and membrane thickness. However, when constructing a violin,

these neglected factors are the ones which have the biggest influence on the

resonance of the instrument and as such, on the Chladni figures formed.

Since the figures and the sound of the instrument stand undoubtedly in some

sort of correlation, there exists a method to measure the nodal patterns on

a violin. By measuring the vibrations using lasers in a tight, grid like array,

one is able to find the nodes by finding the points where the plate does not

vibrate. This technique is aptly named modal analysis.
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Figure 16: Typical results of a modal analysis on a violin [6]

In the above figure, the column to the left shows the vibrating front and

back plates using contour lines to denote areas with the same amplitude and

the right side shows an exaggerated model of the resting plates curvature.

Unfortunately, this method currently only finds limited usage in the violin

world, but it holds enough potential to be a promising technique used to

check parameters such as optimal wood quality and thickness throughout

the plate. The largest problem with modal analysis is that it can only

measure the nodal patterns up to frequencies of approximately 800 Hz.

Current devices are not advanced enough to capture more intricate, high

frequency patterns. Thus, the modal analysis is only able to predict the low

frequency characteristics of the violin. By looking at the different modes,

it is possible to tell if the violin will have a ”dark” or ”bright” sound.

Unfortunately, there are excellent instruments in both of these categories.

Rather, the quality of the violin is determined by its resonance with higher

harmonics in the frequency range above 800 Hz.

Another interesting application of these nodal figures could be in lutherie

schools. Since an apprentice luthier does not have extensive expertise, it

can sometimes be difficult to fabricate an even violin plate. Therefore, by

analyzing the modes on the apprentice’s plate, it would be possible to give

direct and visual feedback on what modifications need to be made in order

to improve its resonance.
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11 Conclusion and Improvements

In this paper, we have attempted to mathematically describe the formation

of Chladni figures on a circular and rectangular membrane, discussed pos-

sible inaccuracies in our mathematical descriptions, created our own figures

in the lab and finally, we have shown some applications of Chladni figures

in lutherie. For a rectangular membrane, we obtained the following formula

governing the formation of Chladni figures:

u(x, y, t) = sin
#nπx

l

$
sin

#mπy

h

$
sin

!
tπα

%
n2

l2
+

m2

h2

"
, (198)

where n is the number of nodes in the x direction without counting the node

at x = 0, m is the number of nodes in the y direction without counting the

node at y = 0, l is the length of the plate in the x direction, h is the height

of the plate in the y direction and α is the wave propagation speed in the

membrane.

For a circular membrane, our formula states that

u(x, y, t) = sin(
gπx

cos((2k − 1) π
2n
) · r

cos( π
2n

)

) sin(
gπy

sin((2k − 1) π
2n
) · r

cos( π
2n

)

)·

sin(
gπαt&

(cos((2k − 1) π
2n
) · r

cos( π
2n

)
)2 + (sin((2k − 1) π

2n
) · r

cos( π
2n

)
)2
), (199)

where g is the number of radial nodes, r is the radius of the circle, n is the

number of vertices of the 2n-gon, α is the wave propagation speed and k

is the the numerator of the vertices varying between 1 and n. As n goes

towards infinity, the 2n-gon takes on a more and more circular shape. This

is a hybrid of a one dimensional and two dimensional solution, which gives

the placement of the nodes as well as the frequency at which they occur.

Equation (199), however, contradicts our findings from the wave equation

in Polar coordinates:

R(r) =
∞)

k=0

(−1)k

(2k · k!)2 ((r +Q1)λ
2)k. (200)

This equation is an infinite polynomial, where r is the radius of the circle,

Q1 is the numerically determined first root of the function, k is a positive

integer, and λ is a constant.

As shown in section 9, the mathematical models do not correspond par-

ticularly well to the experimental results. Reasons for these incoherences
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are most probably external influences not taken into account in the for-

mula, such as uneven surface tension, thickness, material and temperature

of the membrane, as well as the negligence of the mass and grain size of the

sand. It is also probable that the mathematical model is incomplete. Pos-

sible improvements could include better quality membranes and frequency

generators with, eventually, a more direct way of agitating the membrane.

Access to more sensitive instruments would have also enabled the modal

analysis of more complex shapes such as a violin plate. Also, a numerical

analysis of the two dimensional partial differential equation could lead to

the prediction of some Chladni figures which are not able to be seen in our

models.

12 Personal Reflection

By taking on this mathematical journey, I have learned two seemingly op-

posite things about the nature of science and mathematics. Firstly, math

is hard. It requires a distinct will as a novice, to question, research and try

out various solution methods, most of these not leading to a fruitful end.

I started with the grandiose idea that I may be able to predict Chladni

figures on an actual violin. I was looking forward to comparing my model

with experiments on my own instrument. I had hoped to find out how I

could use the patterns to judge the quality of the sound.

Applying mathematics to describe physical phenomena is not always as

straightforward as it may seem. Unfortunately, the irregularities in the

shape of a violin make it virtually impossible to describe at this level using

just a pen and some paper. Thus, I had to greatly simplify my mathe-

matical goal, down to an overly idealized membrane. Additionally, I now

sit here, after doing hundreds of hours of calculations, research and exper-

iments, just to find out that what I spent so much time and energy doing,

does not predict most of the experimental results and cannot even be used

reliably in violin building. This is the first thing I learned: the mathematics

hidden in nature is not always visible right away. We are not simply al-

lowed to neglect certain factors and expect our results to match real world

phenomena. However, through simplification we can break down nature’s

mountains of intricacy into manageable bricks. Stone by stone, we can use

these building-blocks to slowly construct our knowledge and understanding

of the universe.

Secondly, although math is hard, I truly enjoy it. I learned how to dive deep

into the ocean and more importantly, how to hold my breath once down

there. In other words, I learned to dare to grasp my way in the dark, to
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approach subjects that seem daunting at first and I learned how to persist,

to not give up when something doesn’t work out. I threw myself again and

again at the wall which was this project, like waves upon the cliffs, until

I found a small crack in the barricade. Sometimes, I would need a nudge

in the right direction, but eventually, I found the way through, no matter

how small the opening. Then, by trying and trying again, I would slowly

widen the gap, understanding more and more about what was waiting on

the other side until at some point, I came crashing through. There are few

things more pleasing than getting a satisfying solution to a problem. Seldom

was I more proud than when I managed to describe with mathematics what

my eyes could see.
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Appendix: Interview with Stephan Pe-

ter Antwort

Frage: ”Was kann man von der Modalanalyse lernen?”

”Antwort: Wir verstehen mehr wie die Bewegung von Boden und Decke in

den tiefen Frequenzen funktioniert und können damit auch lernen wie wir

die Parameter: Wölbung, Holzdicke und Holzmaterial aufeinander abstim-

men können damit wir entsprechende chladnische Klangfiguren (Moden)

erhalten die die entsprechenden Bilder bei den entsprechenden Frequenzen

haben.”

Frage: ”Was kann man nicht damit lernen?”
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Antwort: ”Soweit ich weiss, wird es ab 800 Hz nach oben schwierig Moden

eindeutig zu bestimmen, das heisst alles was darüber liegt, können wir über

die Modalanalyse nicht sehen und nicht verstehen und für mich persönlich

sind das die eigentlich wichtigen Frequenzen über 800Hz. Das heisst was

sich darüber abspielt unterscheidet erst die gute von der schlechten Geige.

Das heisst wir können unterhalb von 800Hz ein bisschen den Klangcharakter

feststellen, ob eine Geige dunkel oder hell ist, was aber dann vor allem auf

der G und D Saite relFraget ist. Wie gesagt wir können den Charakter aber

nicht die Qualität der Geige feststellen. Wenn eine Geige nicht dunkel ist,

heisst das nicht, sie ist schlecht, sondern sie kann auch nicht dunkel aber

fantastisch gut sein.”

Frage: ”Kann die Modalanalyse in Geigenbauschulen als Lernmittel ver-

wendet werden?”

Antwort: ”Ich denke wenn man sie (Modalanalyse) versteht und auch die

Grenzen davon kennt und das den Schülern vermittelt, kann man da viel

machen, weil es gerade in dem Grundtonbereich der Geige möglich ist das

Verhalten der Geige baulich zu beeinflussen. Das heisst wir können über

die Parameter: Holzmaterial, Wölbung und Holzdicke/stärke können wir

tatsächlich aktiv beeinflussen. Wir können sagen wir machen die Geige ein

bisschen dunkler indem wir sie ein bisschen dünner machen beispielsweise

und können das sehr gut über die Modalanalyse kontrollieren. Als Geigen-

bauer hätte man im grunde genommen die Möglichkeit des ganz einfachen

Biegens der Platte, dann kann man feststellen wie weich ist sie. Wir können

aber auch über die Modalanalyse feststellen ob die Weichheit die richtige

ist. Das ist ein toller Lerneffekt an der Geigenbauschule.”

Frage: ”Welche Zukünfte bieten sich für die Modalanalyse?”

Antwort: ”Weil die Modalanalyse letzendlich die Art und weise wie die

Platten schwingen, wie es sich bewegt beschreibt, hat es natürlich auch eine

Aussage über über die hohen Frequenzen. Das heisst wenn wir es erreichen

können die Modalanalyse für hohe Frequenzen auch anwenden zu können

und wir einen zuverlässigen Zusammenhang zwischen dem wie eine Platte

sich bewegt, was die Modalanalyse ja angibt, und wie die Geige abstrahlt

finden, dann würden die Aussagen über wie sich die Platte bewegt durch

Modalanalyse auch eine verlässliche Aussage über die Abstrahlcharakter-

istik auch in den hohen Frequenzen machen, was sehr wertvoll wäre. Da

ist man aber noch nicht. Es ist logisch, der Grund der Abstrahlung ist die

Bewegung der Platte, das heisst so wie die Platte sich bewegt, so irgend-

wie steckt die Information der Abstrahlung auch drin, das ist einfach noch

nicht so richtig hergestellt. Dieses Bindeglied. Letztendlich interessiert es

den hörer nicht wie sich die Geige bewegt, sondern wie sie abstrahlt.”


