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Abstract

In recent decades, 2D materials have been researched extensively for their exceptional properties

and diverse applications. Their thickness strongly influences their characteristics and therefore

it must be determined prior to any experiment. This paper examines the approach of thickness

identification by optical imaging on behalf of a theoretical model and experimental data, and

tests its reliability for application in research, for both the insulating material FePS3 and the

conductive metallic NbSe2.

The results confirm that the theoretical model accurately describes the contrast and colour of

an insulator on a two-layered (SiO2/Si) substrate. The correlation indicates, that the model’s

underlying assumptions were well chosen - even more so, since there is a significant divergence

between the experimental results for the conductive material and the theoretical model, for

which insulation is assumed. Further, they suggest that the thicknesses of an insulating flake

up to 200 nm correspond to distinct RGB values.

This fact is used to develop an application, which is capable to yield, from a list of RGB values,

the thicknesses, to which they are likely to correspond. The application is evaluated and its

reliability is demonstrated. This report therefore confirms the high practicality of thickness

identification by optical imaging, providing a fast, non-invasive, large-scale and cheap method

to determine the thickness of 2D materials.

Acknowledgements

I would like to express my sincere gratitude to my supervisor Mrs. Yee Ling Willems-Ong for

guiding and supporting me with useful tips and giving very valuable feedback. Additionally, I
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1 Introduction

1.1 Two Dimensional Materials

Imagine you were able to design a material with properties of your choice. Almost that much

is promised by 2D materials. A two-dimensional material is a thin layer of a material that

extends in only one dimension, typically in the nanometer scale. For example, graphene, the

very first 2D material discovered, is a very thin layer of graphite. Very often, 2D materials

differ from their 3D counterpart not only by size, but also in their properties. Due to their

exceptional characteristics, such as high conductivity, flexibility and strength, while also being

almost transparent, there is a lot of current research dedicated to them - especially, since they

can be stacked onto each other, creating an unlimited amount of combinations of features [12].

Although most 2D materials have only been discovered in recent years, they are not only exciting

for exploring new physical phenomena, but there is a vast range of potential applications, for

example optical coatings, water purification systems, and drug delivery systems [9].

Typically, two-dimensional materials are produced from materials, which are built up such that

the atoms within one layer are bound together by strong bonds, but the connection between

the different layers is caused by much weaker Van der Waals forces. Therefore they can be split

up into separate/small stacks of layers, called two dimensional materials [3]. The separation

process is known as exfoliation. There are various types of exfoliation, for example mechanical

exfoliation, which is the one used for this investigation, chemical vapour deposition, epitaxial

growth, or liquid exfoliation [10].

1.2 Aim and Research Question

It has been shown, that the properties of 2D materials strongly depend on their thickness [3, 11].

In particular, optical properties change a lot with different numbers of layers. The goal of this

investigation is to answer the research question: ”How does the optical contrast and the colour

of a three-layer system, consisting of thin flakes of the insulator FePS3 and of the metal NbSe2

on SiO2/Si substrate, change as a function of flake thickness?” In order to establish an answer,

a theoretical model is derived and the behaviour of the correlation between light absorption

reflection of the mentioned materials and their thickness is determined experimentally.

In a second step the question: ”Can the results be used to predict thicknesses for exfoliated

insulators?” is answered. The goal is to develop a Python application, which can convert

a list of RGB colours into the corresponding thicknesses. If applied for whole images, this

application provides a way to identify the flakes of a desired thickness very fast, with low costs,

and non-invasive. This enables precise and large-scale thickness characterisation to facilitate

the production of 2D materials for further research.
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1.3 Choice of Materials

As mentioned above, there are two key materials: Iron phosphorous trisulfide (FePS3) and

niobium diselenide (NbSe2). Both are of layered structure, which means, that the layers are

held together by weaker forces than there are within a layer, and they can therefore be exfoliated

conveniently. The electric conductivity is the main difference between the two materials. FePS3

is an insulator, while NbSe2 has conductive properties, and can even serve as a superconductor

at very low temperatures [2, 11]. They have been chosen in such a way to examine whether

the theoretical model works for insulators, and whether it also holds for conductive materials,

regardless of its fundamental assumptions.

The substrate chips, onto which the flakes are placed after the exfoliation, also play a significant

role for the contrast and colour. Conventionally, they are made up of two materials: a 285 nm

thick layer of silicon dioxide (SiO2) on top of 525 µm silicon (Si). Because the flakes are up to

200 nm thick, and the SiO2 layer is also in this range, the Si layer can be considered semi-infinite.

This term describes the assumption that the material extends infinitely below a flat surface.

(a) Flakes on substrate. Taken from [11] (b) AFM

Figure 1: Material configuration and AFM

1.4 Key Instrument: Atomic Force Microscope (AFM)

For thickness identification, particularly of insulating materials, the current procedural standard

includes the use of an Atomic Force Microscope. At its core, there is a cantilever with a small

spike at its tip. For this study, the contact mode was used. In this mode, the cantilever is

traced back and forth just slightly above the sample (a few tens of nanometres). The very

precise movement to control the height is done by piezo-materials, which extend a tiny bit, if

voltage is applied.

Repulsion and attraction forces, caused mainly by Van der Waals forces, deflect the cantilever

[13]. The subsequent movement of a laser ray, which is reflected by the cantilever, is detected

by a diode. Thus, the cantilever deflection is measured. A feedback loop then changes the

voltages over the piezo-cylinders to adapt the position of the cantilever in such a way, that the

deflection is normalised again, to prevent a crash of the cantilever and the sample. In such a

9



way, an area of at most 30 µm×30 µm can be scanned very precisely (±0.5 − 3 nm). Images

of dimensions 256×256 and 512×512 pixels were collected in this area - which took between 4

and 8.5 minutes. Since there are different ways of measuring the cantilever deflection, an AFM

image contains multiple channels for various sensors1:

• Deflection: The signal, which is given from the diode to the piezo-cylinders, which control

the height, is recorded. This signal can serve to detect flakes, as it has strong minima and

maxima at the edges of flakes.

• Height: The channel, which contains the voltage, which is applied to the piezo-cylinders to

control the height, is called ’Height’. This measurement is very precise for thin flakes, but

due to non-linearity between extension and voltage, this measurement can be inaccurate

for thicknesses above a few tens of nanometres. Additionally, the piezos can change their

behaviour after high voltages, which increases the inaccuracy.

• Z-sensor: The Z-sensor measures the change of height of the cantilever. This signal is

more linear than the Height measurement for thicker flakes. However, the noise level is

higher than for the other two measured values.

1Source: adapted from the user manual of the AFM
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2 Theoretical Background

2.1 The Model of Light and Light Spectra

To understand what occurs when light is hitting the three layer system, let us consider a light

ray which is advancing in space. It behaves as a wave, more specifically, as an electromagnetic

wave [15]. Such a wave consists of an electric and a magnetic field, E⃗ and B⃗. Both fields are

propagating in the direction k⃗ and oscillating with the same frequency ν (Figure 2) [15]. E⃗, B⃗

and k⃗ are all orthogonal to each other:

E⃗ ⊥ B⃗ ⊥ k⃗ (1)

Figure 2: The electric and magnetic components of an electromagnetic wave. Taken from [15]

The energy E of a light wave is denoted by

E = hν (2)

where h is the Planck constant and ν the frequency. Since the amount of energy loss in our

situation is negligibly small, the light ray has a constant frequency in all media.

In vacuum, a light wave is advancing at a constant speed c = 1/
√
ε0µ0 ≈ 3 × 108ms−1 (ε0 =

electrical permittivity, µ0 = magnetic field constant)[15]. The relation between the speed of a

light wave and its frequency is called lambda λ. It denotes the distance between two consecutive

peaks of the electric/magnetic field.

λ =
c

ν
(3)

Electromagnetic waves occur in a huge variety of wavelenghts. As humans, we can perceive only

a tiny fraction (Figure 3a) - light is visible only in the range 380 nm ≤ λ ≤ 770 nm [15]. Within

this range, we observe a variety of colours corresponding to different wavelengths. Generally, the

smaller the wavelength, the higher the frequency and thus according to equation (2), the higher

the energy. A body, such as the sun, emits light waves of various wavelengths. The amount of

intensity per wavelength, which is emitted by a body is called the bodies spectrum. What we

perceive as white light is a mixture of various light waves in the range of the visible spectrum.
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The reason why sunlight normally appears as white is shown in Figure 3b: The light emitted

by the sun consists of almost all wavelengths in the visible range. Since every light source and

light detecting device has their own specific emission or sensitivity spectrum, often much less

continuous than the one of the sun, the comparisons of intensities over different wavelengths

are hard and require calibration.

(a) The electromagnetic spectrum. Taken from [4]
(b) The electromagnetic spectrum of the

sun. Taken from [14]

Figure 3: Electromagnetic spectra

2.2 Refractive Index and Absorption

As stated above, the speed of light in a vacuum is c. However, as soon as light passes through

matter, it interacts and as a result, it is slowed down. The velocity v of light in a medium is

denoted by

v =
1

√
εε0µ0

=
1√
ε
c (4)

where ε is the material specific electrical permittivity [15]. This difference in velocity must be

taken into account to describe what happens when light hits an interface between two media,

in which its velocity varies. The relation between the velocity in a medium to the speed of light

in vacuum is denoted by the absolute refractive index n defined as

n =
√
ε =

c

v
[15]. (5)

The absolute refractive index is material specific. Air has a refractive index very close to 1.

E.g glass, typically has a refractive index of 1.5 [15]. At an interface, some of the light ray is

reflected back at the same angle (incident angle θe = reflected angle θr). Figure 4 indicates,

that the transmitted angle θt of the normal u⃗n and the transmitted ray is not equal to θe nor

to θr. This appearance is called refraction. Using the refractive indices, θt can be computed by

Snell’s law, which is derived from Maxwell’s equations and Fermat’s principle [15]:

ne sin (θe) = nt sin (θr) (6)

A problem arises from the example of a prism: When white light shines through a prism, it

is split into its components. Waves of varying frequencies are refracted to a greater or lesser

12



Figure 4: The incident, reflected and transmitted ray. Modified after [15]

extent, therefore they must have interacted unequally strong with the material. This example

reveals that the refractive index depends on the light wave frequency. The phenomenon is called

dispersion [7]. It reveals, that the definition of n in equation (5) is not complete. Dispersion is

caused by absorption. As light passes through matter, some of the waves hit atoms2. Depending

on the energy (which is proportional to the frequency ν of the wave), the atom behaves in

different ways: The electrons surrounding an atom can be in a number of states. Here, we

distinguish between an excited state and the normal state. Relative to the normal state, the

excited state has a higher energy level. When a light wave arrives with an energy lower than the

difference between the normal and the excited state, the energy of the wave is transformed to

kinetic and thermal energy, which means that the atom shakes more strongly [7]. If the energy

of the wave is greater than the difference between the electron states, they are excited to the

higher energy level. As soon as they drop down to the lower state again (happens around 108

times per second [7]), and therefore loose the potential energy stored in the higher state, a wave

of the same energy as the incoming wave is released in a random direction [7].

Depending on the energy of the incident wave, it is absorbed to a greater or a lesser extent. Since

the energy of a wave is proportional to its frequency, the absorption depends on the frequency.

The value of absorption is usually determined experimentally for a range of frequencies (e.g. by

ellipsometry). Finally, the refractive index for a specific medium nmedium is defined as

nmedium = n+ ik where i2 = −1 (7)

n in equation (7) denotes the ratio between the speed of light in vacuum and the velocity

in the medium, and k denotes the dampening of the oscillation (since the average amplitude

decreases) [7]. For computations in this study, the refractive indices were taken from https:

//refractiveindex.info/.

Introducing the refractive index creates a need to define the wavelength λ more generally than

in equation (3), since the wavelength changes proportional to the velocity of light.

λmedium =
v

ν
=

c

nmediumν
(8)

2When talking about absorption, light usually is described as a photon. Since these terminologies require
explanations beyond the scope of this study, the terms for a wave are used.
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2.3 Interference

2.3.1 Wave Description

It follows from Maxwell’s equations (introduced in section 3) that both the electric and the

magnetic field can be described using sinusoidal functions [15]. From the frequency, the angular

velocity ω = 2πν can be determined. The functions for the wave depend on the time t, the

position r⃗, the phase φ and the amplitudes E⃗0 and B⃗0

E⃗ = E⃗0 cos (k⃗r⃗ − ωt+ φ) (9)

B⃗ = B⃗0 cos (k⃗r⃗ − ωt+ φ) (10)

For the theory model, a different notation, obtained by Euler’s formula, is used [15]:

E⃗ = E⃗0e
i(k⃗r⃗−ωt+φ) = E⃗0

(
cos (k⃗r⃗ − ωt+ φ) + i sin (k⃗r⃗ − ωt+ φ)

)
(11)

B⃗ = B⃗0e
i(k⃗r⃗−ωt+φ) = B⃗0

(
cos (k⃗r⃗ − ωt+ φ) + i sin (k⃗r⃗ − ωt+ φ)

)
(12)

All computations are done this notation, because it makes them more convenient; in the end,

only the real part of the result will be taken and is physically measurable.

2.3.2 Addition of Two Waves of Equal Frequency

With the help of equations (9) and (10), it is possible to describe what is happening when two

waves of the same frequency are travelling in the same direction. In this case, the waves can

be added together. The formal calculation is done in reference [7]. As a result of the addition,

there is a new wave. The most important factor is the phase shift between the two phases of

the waves, ∆φ = φ1 − φ2 [7]. The effect is shown in Figure 5. In the upper graph, the phase

Figure 5: The principle of interference. E,E1, E2 denote the electric field. Taken from [7]
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shift ∆φ = 0; the waves add up to a new wave of higher amplitude. This is called constructive

interference [7]. The lower graph shows the opposite; if the phase shift ∆φ = π, the maxima

of one wave coincide with to the minima of the other wave and result in a new wave of lower

amplitude. This is called destructive interference [7]. If the amplitudes of the two waves were

equal, the resulting wave would even have an amplitude of 0.

2.4 Principle of Thickness Identification by Optical Imaging

Both the refractive index and interference play a crucial role in the principle of determining

thickness using optical imaging. A beam of white light is shone perpendicularly onto the surface

of a flake. Some of the light is reflected, and some enters the material. All of the rays, which are

returning to the surface from within the materials, for example the part of the transmitted ray,

which is reflected at the bottom of the flake, have a phase shift compared to the reflected ray.

This phase shift depends on the refractive index of the material and on the thickness of the flake.

Due to differences in phase shift for various thicknesses, the wavelengths, of which the reflected

rays undergo constructive interference, and the wavelengths, for which destructive interference

occurs, are changing with thickness [2, 11]. Thus measuring the colour of the reflected light

encodes the thickness of the flakes. This method has a variety of benefits: measuring the colour

requires a lot less expensive technique than other types of thickness measurements. It is also

much faster and non-invasive (the flakes are not damaged).

2.5 Colour Codes in Digital Cameras

Finally, a word on digital colour encoding. As soon as light waves hit a camera sensor, their

intensity is registered. Shortly before, all wavelengths are filtered into three categories: red,

green and blue. Together the three intensity values for red, green and blue, each between 0

and 255, form the RGB value, into which any colour, that displayed on a screen, is encrypted

by additive colour blending. In this paper, intensity values are presented without indicated

units. Unfortunately, there are factors, which increase the difficulty of mapping wavelengths

onto RGB values: for example, a short wavelength, which we perceive as violet, has high red

and blue values. On the other end of the spectrum, a long wavelength, corresponding to red,

is represented as a high red value. However, in the middle of the spectrum, red values are very

low. Thus the translation between wavelength and RGB value has to be approximated.
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3 Theoretical Model

To develop a well-founded hypothesis, we derive a theoretical model3 for the expected amount

of light reflected by a three-layer system. If the experimental data supports the hypothesis, this

would further validate the underlying assumptions behind the theoretical model. The model is

based on Fresnel’s Laws, which in turn can be derived directly from Maxwell’s equations. Since

it appears often in literature with very little explanations, we will derive it step by step in the

following chapter.

3.1 Reflection and Transmission - Fresnel Equations for Perpendicular Incidence

3.1.1 Boundary Conditions

As mentioned in section 2, let us consider light as an electromagnetic wave. A light wave consists

of an oscillating electric and magnetic field which are perpendicular to each other. We can define

a coordinate system, where both fields travel in +z direction, thus the electric field oscillates in

the xz-plane and the magnetic field in the yz-plane (Figure 2 with k⃗ = z⃗). To get started, we set

our boundary conditions: The light behaves as a wave when switching from medium to medium

- so the tangential component of the electric field strength E⃗ and its counterpart the magnetic

field strength H⃗ = 1
µ0µ

B⃗ must be continuous [15]. This implies that the x and y coordinates

of E⃗ and B⃗ respectively must be equal just above and below the boundary. Additionally, since

energy conservation holds, the frequency of the light does not depend on the medium and is

constant. Using the notation ei(k⃗z⃗−ωt) for our wave, representing cos(k⃗z⃗ − ωt) · i sin(k⃗z⃗ − ωt),

we get the following condition:

E⃗0,ee
i(k⃗ez⃗−ωt) + E⃗0,re

i(k⃗r z⃗−ωt) = E⃗0,te
i(k⃗tz⃗−ωt) (13)

B⃗0,ee
i(k⃗ez⃗−ωt) + B⃗0,re

i(k⃗r z⃗−ωt) = B⃗0,te
i(k⃗tz⃗−ωt) (14)

Where E⃗0,e, E⃗0,r, E⃗0,t denote the amplitude of the incident, reflected and transmitted electric

fields, respectively. For simplicity, we consider the case in which the angle of incidence is

perpendicular to the surface of the sample. This assumption is reasonable, since the microscope

has a built-in light source going through its lens and hits the sample from directly above. Since

we are interested in the reflected intensity, we can focus only on the amplitudes [15]:

E⃗0,e + E⃗0,r = E⃗0,t (15)

B⃗0,e + B⃗0,r = B⃗0,t (16)

3Dr. Hugo Anders indicates ROUARD as the original source [1].
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3.1.2 Maxwell’s Equations

For our purposes, we are presupposing to be treating isotropic, non-magnetic (µ = 1), homo-

geneous, even surfaced materials. Additionally, the materials are assumed be insulating, such

that charge density ρ = 0 and current density j⃗ = 0. This criterion is not fulfilled for NbSe2. If

the model would hold for NbSe2, the necessity of the assumption should be reconsidered.

Under the assumptions, Maxwell’s equations take the form:

εε0∇⃗ · E⃗ = 0 (17)

∇⃗ · B⃗ = 0 (18)

∇⃗ × E⃗ = −∂B

∂t
(19)

∇⃗ × B⃗ = µ0εε0
∂E

∂t
(20)

where ∇⃗ is the Nablaoperator, ε and ε0 are the electrical permittivity for the material and

vacuum resp., and µ0 is the magnetic field constant [15]. For x⃗, y⃗, and z⃗ being the unit

vectors of a three dimensional Cartesian coordinate system, ∇⃗ = ∂
∂x⃗ + ∂

∂y⃗ + ∂
∂z⃗ . Plugging in

E⃗ = E⃗0e
i(k⃗z⃗−ωt) and B⃗ = B⃗0e

i(k⃗z⃗−ωt) into equation (19), we derive:

∇⃗ × E⃗0e
i(k⃗z⃗−ωt) = − ∂

∂t
(B⃗0e

i(k⃗z⃗−ωt)) (21)

Travelling along the z-axis, E⃗ only oscillates in the xz-plane of the coordinate system that we

are working in. Its derivative w.r.t. x⃗ or y⃗ therefore is 0. Using the cross-multiplication rules,

keeping E⃗0 = const., and expanding yields:(
∂

∂x⃗
ei(k⃗z⃗−ωt) +

∂

∂y⃗
ei(k⃗z⃗−ωt) +

∂

∂z⃗
ei(k⃗z⃗−ωt)

)
× E⃗0 = −(−iω) · B⃗0e

i(k⃗z⃗−ωt) (22)(
0 + 0 + ik⃗ · ei(k⃗z⃗−ωt)

)
× E⃗0 = iω · B⃗0e

i(k⃗z⃗−ωt) (23)

ik⃗ × E⃗0e
i(k⃗z⃗−ωt) = iω · B⃗0e

i(k⃗z⃗−ωt) (24)

k⃗ × E⃗0 = ω · B⃗0 (25)

Solving for B⃗0 results in:

B⃗0 =
1

ω
(k⃗ × E⃗0) (26)

This equation describes the relation between the magnetic and the electric field of a light wave

- one cannot exist without the other, they are perpendicular to each other (cross product), and

both are oscillating with the same frequency.
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3.1.3 Developing Fresnel’s Equations

Combining the results from the previous two sections, we insert (26) into (16).

1

ω
(k⃗e × E⃗0,e) +

1

ω
(k⃗r × E⃗0,e) =

1

ω
(k⃗t × E⃗0,t) (27)

ω cancels, since it is independent of the medium. We can further simplify: the incident (e) and

reflected (r) rays are anti-parallel, therefore k⃗r = −k⃗e. The transmitted (t) ray has the same

direction as k⃗e, but is slower due to the surrounding matter: k⃗t =
nt
ne
k⃗e.

(k⃗e × E⃗0,e)− (k⃗e × E⃗0,r) = (
nt

ne
k⃗e × E⃗0,t) (28)

E⃗0,e − E⃗0,r =
nt

ne
E⃗0,t (29)

neE⃗0,e − neE⃗0,r = ntE⃗0,t (30)

Using both conditions, which were set up in section 3.1.1, we combine (30), originating from

(16), and (15), and solve for both E0,r and E0,t separately.

from (15): E⃗0,e + E⃗0,r = E⃗0,t (31)

from (30):
ne

nt
(E⃗0,e − E⃗0,r) = E⃗0,t (32)

nt(E⃗0,e + E⃗0,r) = ne(E⃗0,e − E⃗0,r) (33)

ntE⃗0,r + neE⃗0,r = neE⃗0,e − ntE⃗0,e (34)

E⃗0,r =
ne − nt

ne + nt
E⃗0,e (35)

Similarly, E⃗0,t − E⃗0,e = E⃗0,e −
nt

ne
E⃗0,t = E⃗0,r (36)

E⃗0,t +
nt

ne
E⃗0,t = 2E⃗0,e (37)

E⃗0,t(ne + nt) = 2neE⃗0,e (38)

E⃗0,t =
2ne

ne + nt
E⃗0,e (39)

We define the relative reflectivity ret and relative transmission tet:

ret =
ne − nt

ne + nt
=

E⃗0,r

E⃗0,e

tet =
2ne

ne + nt
=

E⃗0,t

E⃗0,e

(40)

To arrive at the relative reflected intensity R, in which we are interested, we square r or, in case

r is complex, multiply it by its complex conjugate

R =
Ir
Ie

= retr
∗
et (41)

Note: there is a difference between ret =
ne−nt
ne+nt

and rte = nt−ne
nt+ne

; in fact, rte = −ret. Further,

tet = 1 + ret, since
2ne

ne+nt
= ne−nt

ne+nt
+ ne+nt

ne+nt
= ne−nt

ne+nt
+ 1.
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3.2 Reflection of Light on Interfaces

The main source for this section is [1].

3.2.1 Single Interface

To demonstrate, how Fresnel’s equations work, suppose a light ray is travelling in air (nair =

n0 = 1) and hits an even surface in the xy-plane (nmatter = n1 = 1.5) perpendicularly. How

much of the light is reflected?

R = r01r
∗
01 = r201 (here n0, n1 ∈ R have no complex part) (42)

R =

(
n0 − n1

n0 + n1

)2

=

(
1− 1.5

1 + 1.5

)2

= 0.04 = 4% is reflected. (43)

3.2.2 Two Interfaces

n_0

n_1

n_2

I_e
I_r

d_1...

Figure 6: Model of light rays passing through two interfaces perpendicularly. The three dots
indicate infinite repetition. Modified after [5].

If a ray of intensity Ie is entering a material with a small thickness d1, and there is another

material with refractive index n2 ̸= n1 underneath, calculating the reflected intensity Ir becomes

more challenging. Figure 6 illustrates the situation: r01r
∗
01 of the incoming ray is reflected at the

first interface. The transmitted portion enters the upper material, some of it is absorbed, some

of it passes on to the lower material, and some of it is reflected off the second interface. The

latter travels back up until it reaches the upper interface. Here, some of the ray is transmitted -

this part is observable and contributes to the reflected intensity Ir - and some is reflected again.

This creates three aspects, that we have to worry about:

• Absorption: how much intensity is lost when travelling through matter?

• Interference: the rays passing through the material and returning have a phase shift

compared to all the other rays, which have been either directly reflected or travelled a

shorter or longer distance inside the material.

• Repetition: The ray can be reflected on both interfaces repeatedly - each time, a smaller

amount of the original ray passes through the first interface and accounts for the reflected

intensity. This happens infinitely many times.
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Absorption

A part of the transmitted light ray is absorbed by the matter. The process of absorption is

discussed in section 2.2. n is defined such that it accounts for absorption.

Interference

The phenomenon of interference, explained in section 2.2, is the reason, why the amount of

light reflected off the first interface and the ray which has passed down and up once through

the upper material can not simply be added together. The second ray has a phase-shift ∆ϕ1

compared to the first one. We can deduce the phase-shift with the help of the equation of the

wave and the Figure 6:

E⃗0e
i(k⃗z⃗−ωt) (44)

Here, k⃗z⃗ denotes the phase of the wave w.r.t. a certain position z⃗. The phase-shift ∆ϕ1 is

built up in the same way - there occurs a phase shift because of spatial difference. As the wave

travels the distance d1 within the upper material, it picks up a phase shift of ∆ϕ1 = |⃗k1|d1.
Since |⃗k1| = n1 |⃗k0| = 2π

λ n1, where k⃗0 denotes the original k⃗ from above, expanding yields:

∆ϕ1 =
2πn1d1

λ
(45)

Repetition until Infinity: Developing the Equation

Let us examine the first few rays displayed in Figure 6 to illustrate the process. Initially,

rtot ≈ r01. A fraction passes the upper interface (t01), picks up a phase-shift of ∆ϕ1, and some

of it is reflected at the lower interface (r12). A fraction of the ray is transmitted and travels

away in the lowest medium. As the reflected ray travels up again, it picks up a second phase

shift, before most of it is transmitted through the upper interface from below. For the moment,

rtot ≈ r01 + t01e
−i∆ϕ1r12e

−i∆ϕ1t10. (46)

But we have to continue the path of the ray, which has travelled once down and up, isn’t

transmitted but reflected (r10), picks up ∆ϕ1, is reflected again (r12), picks up ∆ϕ1 and is

transmitted through the upper interface (t10).

rtot ≈ r01 + t01r12t10e
−i2∆ϕ1 + t01r12r10r12t10e

−i4∆ϕ1 (47)

Continuing the paths, we arrive at:

rtot = r01 + t01r12t10e
−i2∆ϕ1 + t01r12r10r12t10e

−i4∆ϕ1 + t01r12r10r12r10r12t10e
−i6∆ϕ1 + . . . (48)

rtot = r01 + t01r12t10e
−i2∆ϕ1(1 + r10r12e

−i2∆ϕ1 + (r10r12e
−i2∆ϕ1)2 + (r10r12e

−i2∆ϕ1)3 + . . .

(49)

rtot = r01 + t01r12t10e
−i2∆ϕ1

∞∑
n=0

(r10r12e
−i2∆ϕ1)n (50)
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Applying the formula for an infinite geometric series, since r10r12e
−i2∆ϕ1 < 1, and expanding

yields the equation for the relative reflectivity of a two-layer system:

rtot = r01 +
t01r12t10e

−i2∆ϕ1

1− r10r12e−i2∆ϕ1
(51)

rtot =
r01 − r01r10r12e

−i2∆ϕ1 + t01r12t10e
−i2∆ϕ1

1− r10r12e−i2∆ϕ1
(52)

rtot =
r01 + r01r01r12e

−i2∆ϕ1 + (1 + r01)(1− r01)r12e
−i2∆ϕ1

1 + r01r12e−i2∆ϕ1
(53)

rtot =
r01 + r201r12e

−i2∆ϕ1 + r12e
−i2∆ϕ1 − r201r12e

−i2∆ϕ1

1 + r01r12e−i2∆ϕ1
(54)

rtot =
r01 + r12e

−i2∆ϕ1

1 + r01r12e−i2∆ϕ1
(55)

3.2.3 Three Interfaces

To predict the amount of reflected light from a flake of thickness d1 on a SiO2/Si substrate,

where the thickness of SiO2 is denoted by d2, we can simply plug in the same equation for the

relative reflectivity r12 −→ r′12. Figure 7 visualises this mathematical idea. To arrive at a final

formula, we define:

rtot =
r01 + r′12e

−i2∆ϕ1

1 + r01r′12e
−i2∆ϕ1

r′12 =
r12 + r23e

−i2∆ϕ2

1 + r12r23e−i2∆ϕ2
(56)

Plugging in and simplifying yields:

rtot =
r01 +

r12+r23e−i2∆ϕ2

1+r12r23e−i2∆ϕ2
e−i2∆ϕ1

1 + r01
r12+r23e−i2∆ϕ2

1+r12r23e−i2∆ϕ2
e−i2∆ϕ1

(57)

rtot =

r01(1+r12r23e−i2∆ϕ2 )+r12e−i2∆ϕ1+r23e−i2∆ϕ2e−i2∆ϕ1

1+r12r23e−i2∆ϕ2

1+r12r23e−i2∆ϕ2+r01r12e−i2∆ϕ1+r01r23e−i2∆ϕ2e−i2∆ϕ1

1+r12r23e−i2∆ϕ2

(58)

rtot =
r01 + r12e

−i2∆ϕ1 + r23e
−i2(∆ϕ1+∆ϕ2) + r01r12r23e

−i2∆ϕ2

1 + r01r12e−i2∆ϕ1 + r01r23e−i2(∆ϕ1+∆ϕ2) + r12r23e−i2∆ϕ2
(59)

n_0

n_1

n_2

n_3

I_e

I_r

d_1

d_2

...

...

...

...

.........

Figure 7: Model of light rays passing through three interfaces perpendicularly. Three dots
indicate infinite repetition. Modified after [1].
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4 Methodology

4.1 Experiment

In order to answer the research question and produce data for further applications, the height

and the red, green, blue and greyscale intensity values of various flakes of both iron phosphorous

trisulfide FePS3 and niobium diselenide NbSe2 were measured. Materials of current procedural

standard were used to achieve best precision. This is necessary as the results should be used

for further research. The experiment can be replicated with less expensive material (except for

the AFM), but lower precision has to be expected. A small preliminary experiment, including

data analysis, proved to be very insightful and is highly recommended. A short summary of the

Methodology can be found in the Appendix.

4.1.1 Materials

• SiO2/Si substrate chips with markers

• Tweezers (metal and rubber)

• 10ml acetone

• 10ml isopropanol (IPA)

• Ultrasonic bath

• Water (if possible, de-ionised)

• Gaseous Nitrogen

• Two small beakers with lid

• Small boxes to store substrate chips

(ideally with adhesive gel coating, e.g.

Polydimethylsiloxan (PDMS))

• Adhesive tape

• Brick (weight=50 g)

• Optical microscope with camera

• Atomic Force Microscope

• SiO2/Si substrates with markers

(cleaned)

(a) Ultrasonic bath & closed beaker (b) Materials for exfoliation

Figure 8: Materials

4.1.2 Substrate Preparation

SiO2/Si substrate chips, onto which markers had been written with gold and which were sealed

with a coating to prevent contamination and physical deformation, were provided. To prepare

them for further use, this coating had to be removed in a process called ’resist stripping’.

Acetone removes most of the coating, IPA removes small remainders.

22



1. The water in the ultrasonic bath was heated up to 40°C. The acetone and the chips were

put into a beaker with a lid using tweezers. The lid was closed and placed into the water

for 20 minutes.

2. The ultrasonic cleaning was switched on for 15 minutes.

3. Isopropanol was poured into another beaker. Again using tweezers, the chips were trans-

ferred from the acetone beaker to the IPA and sonicated for another 15 minutes.

4. The chips were then taken out individually and dried immediately using gaseous nitrogen

to prevent traces of drying. Finally, the solvents were disposed separately.

4.1.3 Exfoliation

The process of obtaining flakes from a bulk crystal is called exfoliation and is described in this

section. The same process has been done for both materials and for each substrate chip.

1. A small piece of crystal was placed on the blue adhesive tape (Figure 8b) using tweezers.

The piece was removed from the tape immediately, leaving behind a very small residue on

the tape. If the material is harder, it is necessary to press the piece slightly onto the tape

before removing it, to ensure that there is an adequate amount of material on the tape.

2. The tape was then folded together (adhesive sides touching), then gently torn apart,

so that the material is distributed on two spots on the tape. When folding the tape

repeatedly, while shifting it such that the spots do not land on the same spot every time,

the cohesive parts of material become thinner, but unfortunately smaller as well. The

folding was done 8 times - this number can be adapted depending on whether larger and

thicker or thin and small pieces are required.

3. One of the substrate plates was placed onto the adhesive tape with tweezers (SiO2/Si

surface onto adhesive side). The brick was placed on top of the plate for 10-15 s to apply

slight pressure and ensure that there is some material on the substrate. The substrate

plate was then torn gently off the tape to make the sample finally ready for investigation.

4.1.4 Optical Imaging

The freshly prepared samples were placed under the optical microscope and illuminated by a

lamp through the lens of the microscope. Note that the optical images were taken in the first

30 minutes after exfoliation to prevent distortion by oxidation. All images for data collection

were taken with the 50X magnification lens (e.g. appendix and Figure 9a, image size: 243 µm ×
182 µm). To find the same flakes later in the AFM, another image with the 20X mag. lens was

taken (where the adjacent markers on the substrate are visible; image size: 768 µm × 576 µm).

As the resolution of 2592×1944 pixels is relatively low for the small flakes, images were only

taken, if the flakes were large enough to allow a colour value to be obtained later on and if

the flakes were of distinct height (some big flakes have a wavy surface, where the height varies

over short distances). Nevertheless, an even distribution of data for all colours and heights was

pursued. To make the images comparable, the camera was set to 5.7ms exposure, 1.9x gain,
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100.00 saturation and 0.6 gamma. Furthermore, auto-white balance was done using a white

test stripe and the aperture was closed as much as possible for sharpness over the whole height.

Any shading, sharpening or contrast was turned off, and the files were saved in png-format.

4.1.5 AFM Imaging

The substrate chip was fixed on the AFM sample holder using adhesive carbon tape. The flakes

of which pictures had been taken were scanned in the AFM (256 × 256 or 512 × 512 pixels

(depending on the complexity of the flakes), each picture 30 µm× 30 µm, contact mode), to

determine the exact (± 0.5-3 nm) height. A sample image is shown in Figure 9c.

4.1.6 Safety Regulations

During the process of substrate preparation and exfoliation, gloves and goggles were worn. Any

substances used in contact with the substrate plate were disposed separately. The substrate

plates were only moved around with tweezers to prevent contamination. Substrate stripping

and exfoliation was done under fume hoods. Solvents used (acetone, isopropanol) must not get

in contact with skin or mucous membranes and must be disposed separately.

4.2 Data Evaluation

The data evaluation was done using Gwyddion for AFM images, Spyder as Python compiler,

Microsoft Excel for data storage, and Desmos Scientific Calculator for curve analysis. The

corresponding versions can be found in the References.

4.2.1 Measuring Colour Values and Computation of Contrast

To obtain the contrast values for each measured thickness, the colour values at the precisely

same position had to be determined first. To speed up the process of data extraction, a Python

script was written (see appendix). Upon entering the values of the desired points x and y

coordinates in the optical image, the program yields the RGB and greyscale values for every

pixel in a 5×5 pixel square to the bottom right of the indicated point, as well as the average

red, green, blue and greyscale values, and their standard deviation over the square and the x, y

values. It then displays the image, marking the measured square black to check the position.

Finally, the extracted values were copied to Microsoft Excel and the following calculations were

done:

Levelled RGB and greyscale values Ilevelled = I − sav + Sav (60)

Contrast: C =
Sav − Ilevelled

Sav
(61)

Where I is the red, green, blue or greyscale value of a flake, sav the corresponding adjacent

substrate value (average of the three measurements), and Sav the corresponding average of all

substrate values. Such a 5x5 pixel square was attained for each profile and three times for the

substrate close to the area being investigated for each group of flakes on one AFM image.
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4.2.2 Measuring Height

The heights of individual flakes were extracted from AFM images using Gwyddion. The data

of the Z-Sensor contains a map of heights that requires processing for more precise results. The

maps were levelled, using the ’Level data by fitting a plane through three points’, because when

placing a sample into the AFM, there is always a slight inclination. This is due to the sample

load platform, which is not perfectly flat - in the frame of nanometres, this tilt is significant.

The level of the plane was then set to zero such that the displayed height is with respect to

the substrate surface (For plane fit: Averaging radius = 3; the three points were distributed in

different corners and onto the substrate).

To measure the height of a flake, profiles were extracted along straight lines (white lines in

Figure 9c; thickness = 2 pixels). Each line goes from smooth substrate to a flat part of a

flake, containing an edge as sharp as possible. The lines were drawn horizontally, following the

direction in which the data was recorded to enable high precision. A few profiles of interesting

flakes were drawn vertically instead of horizontally, because neighbouring flakes would prevent

accurate height measurements. For each flake, 3 profiles were drawn per area with similar height

to reduce the effect of outliers arising throughout the data evaluation.

For each AFM image, a graph (Figure 9d) was produced, showing all extracted profiles. Using

the ’Fit critical dimension’ function in Gwyddion, the height of the step in each profile, including

the measurement error, was determined and recorded in Microsoft Excel. All processed AFM

images and the corresponding graphs are shown in the appendix.
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5 Results

5.1 Experimental Data FePS3

In this subchapter, the experimental results for the reflected intensity, contrast and colour per

thickness of FePS3 are presented. They have been extracted from pictures like the ones shown

in Figure 9. Both in Figure 9a and 9b, a slight blur in the middle of the image and a few darker

dots are visible. They are part of the microscope illumination and camera system, and to

prevent errors in measuring, the data has been measured in places without such contamination,

as indicated in Figure 9b by white crosses. All the optical and AFM images can be found in

the appendix.

(a) Optical microscope (b) Data collection sites

(c) Processed AFM image (d) Profiles from AFM image

Figure 9: Example of FePS3 data

5.1.1 Reflected Intensity FePS3

Figure 10 shows the levelled reflected intensity for the red, green, blue and greyscale channels.

The values have been levelled with the equation (60) as described in the end of section 4. A few

values are above 255 due to the levelling. Measurements of this material have been taken up to

200 nm thickness on two different days. The black points have been measured on the first day,

the coloured (& grey) points on the second day with fresh samples. Although attention was

paid to the settings of the camera, factors beyond our control resulted in a certain systematic

error. The pictures from the second day are overall slightly darker than the ones taken on the
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first day. Any other small measurement errors are indicated by the bars at one point: horizontal

lines indicate the error in the height measurement, vertical lines indicate the standard deviation

of the colour measurement (More elaboration on errors in section 6.3).

For each colour, peaks are reached at different thicknesses: the shortest wavelengths, contrib-

uting mainly to the colour blue, are at a very high level on the thinnest flakes. Another peak is

at around 95-115 nm. The medium wavelengths, contributing mainly to the colour green, reach

a peak between 30 nm and 60 nm. The data from the second day suggests a peak at 30-40 nm.

The longest wavelengths, corresponding to the colour red, peak at approximately 60 nm. Both

the red and green channels decrease rapidly after this first peak, and increase again and peak

at around 125-160 nm (green) and 170-200 nm (red).

Figure 10: Measured RGB values FePS3

5.1.2 Measured Contrast FePS3

From the reflected intensity, the contrast with respect to the surrounding substrate has been

calculated using the equation (61) and plotted in Figure 11. Contrast values have a benefit over

the levelled reflected intensity: the systematic error due to non-recorded changes in the camera

become less significant. Since the bias of the flake is similar to the one of the surrounding

substrate, by calculating their differences, the bias becomes smaller. Therefore showing the
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measured contrast facilitates replication of this study by decreasing the significance of the

camera settings. The points were fitted using a damped sinusoidal function of the form

Contrast C = Ae−λd cos (ωd+ ϕ) + c, where d = thickness and there are 5 parameters, (62)

which yielded r2 values above 0.83. They will be used in the next section.

Figure 11: Measured contrasts FePS3

Red: C = 1.378e−d/300.60 cos(
2π

120.25
· d− 0.222)− 0.711 (63)

Green: C = 1.389e−d/114.70 cos(
2π

115.51
· d+ 0.700)− 0.697 (64)

Blue: C = −0.445e−d/1020.3 cos(
2π

81.574
· d+ 4.359) + 0.268 (65)

All: C = 1.358e−d/69.394 cos(
2π

131.85
· d+ 0.694)− 0.422 (66)

For each channel, the contrast values are interpreted as such: if C = 0, then the intensity value

is the same as for the surrounding substrate (IRs = IR). If C = 1, then IR = 0; it follows

that the intensity value is 0. If C < 0, the value of the flake is higher than the value of the
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surrounding substrate. Overall, it follows from equation (61), that

IR = (1− C) · IRs (67)

In Figure 11, the local minima reflect the peaks from Figure 10. The fit-functions were differ-

entiated w.r.t d to find minima and maxima; the values for d if dC
dd = 0 were computed using

Desmos Scientific Calculator and they are shown in the Table 1.

Colour Contrast Maxima at d(nm) Contrast Minima at d(nm)

Red 3.03 , 123.3 63.2, 183.4
Green 99.7 42, 157.5
Blue 65.6, 147.2 24.8, 106.4, 188.0
Grey 111 45.2, 177.0

Table 1: Maxima and minima of measured contrast for FePS3

5.1.3 Measured Colours FePS3

From the fit-functions, which yield the contrast values, the measured colours were generated

and plotted in Figure 12. Using the equation (67): IR = (1−C) · IRs , where C is computed by

the contrast fit-functions which depend on the thickness and the average measured substrate

values IRs are 91, 99, 231 for red, green and blue respectively.

Figure 12: Measured colours FePS3

Note that due to this procedure, colours below 10 nm thickness might be misleading, as data

for the fit-functions is lacking. For the other thicknesses, this graph indicates the measured

colours of flakes; the very thin flakes are dark blue (note that this is a purer blue than around

110-120 nm). They then become lighter up until around 40 nm. Between 45 nm and 85 nm, the

flakes are yellow and become gradually more orange. Between 80 nm and 100 nm, flakes may

appear violet. Going on, the flakes become blue again until; this time a more greyish blue. From

130 nm onwards, green is the dominant colour, before turning pink again around 170 nm until

200 nm. Note that the only colours which are multiple times are blue (0-40 nm; 105-125 nm)

and violet/pink (90-100 nm; 180-200 nm). The results are discussed in section 6.
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5.2 Computing the Theoretical Model for FePS3

From the equation (59) developed in the section 3, we generated various different kinds of plots

to allow comparisons to the experimental data.

5.2.1 Predicted Contrast FePS3

To allow comparison to the experimental data and related studies, we compute the contrast

C = Rs−R
Rs

with respect to the surrounding substrate (Rs = rtotr
∗
tot, as defined in equation

(55)). For thicknesses 1-10 nm, the results are shown in Figure 13a.

(a) Predicted contrasts FePS3 (1-10 nm) (b) Predicted contrast FePS3 (0-200 nm)

(c) Predicted contrasts FePS3 (0-200 nm; 101 lines)

Figure 13: Computing the predicted contrast

For the thinnest flakes it can be seen that the decrease in contrast at a wavelength of approxim-

ately 535 nm and the increase at 630 nm per nm are constant; the contrast changes linearly with

the flake thickness. Around the blue wavelengths, the contrast is close to 0 and does not vary

for thin flakes. Computations for thicknesses between 0 nm and 200 nm are shown in Figures

13b and 13c. Estimated minima and maxima are shown in Table 2. They were determined only
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visually because of the complex construction of the computation.

Colour Contrast Maxima at d(nm) Contrast Minima at d(nm)

Red 10, 125 65, 185
Green 105 50, 155
Blue 60, 155 20, 105, 195

Table 2: Maxima and minima of predicted contrast for FePS3

5.2.2 Predicted Colours FePS3

As with the measured results, a plot of the predicted colours per thickness has been generated.

To facilitate the computation, the colours have been generated directly from the values for R

rather than C. The wavelengths were first converted to RGB values. Because they do not

translate 1:1, an approximation was used (see code in Appendix). Subsequently, for every

wavelength, this combination of red, green and blue values was multiplied by its corresponding

value of R. These products were added together for all wavelengths and divided by the sum

of all R (one per wavelength) for each channel separately. To adjust the spectra as emitted by

the microscope light and as detected by the camera sensor, to the spectra of the theory model

(which is based on equal intensities across all wavelengths), and to the spectral sensitivity of

the human eye, the values were slightly calibrated: as a result, the values of the blue channel

were doubled and additionally all values were multiplied by 1.3 to achieve a proper brightness.

(a) Predicted RGB intensity FePS33 (b) Predicted colours FePS3 (0-200 nm)

Figure 14: Predicted colours and reflected intensity for FePS3

Once again, we observe a wide range of colours; they start rather dark, something in between

violet and blue. Up until 35 nm thickness, light blue is strongly saturated. The blue value

decreases whilst red colours become more intense until 90 nm. Between 100 nm and 110 nm

the colour is pink. something like greyish blue starts at 115 nm and turns into light blue until

160 nm, where some green shows, before from 180 nm until 200 nm turning orange and red again.
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5.3 Experimental Data NbSe2

In this subchapter, the experimental results for the reflected intensity, contrast and colour per

thickness of NbSe2 are presented. For this material, samples were collected only up to 100 nm,

all on the same day. The optical and AFM images can be found in the appendix. The order in

which the data is presented is the same as for FePS3.

5.3.1 Reflected Intensity NbSe2

Figure 15: Reflected intensity NbSe2

Figure 15 shows the reflected light intensity per thickness split up into the colour channels. Blue

colours show the highest reflected intensity for thicknesses around 10 nm. Until 60 nm the values

decrease by 100. There is a cloud of flakes with thickness between 70 nm and 105 nm, ranging

from 170 up to 230. Green wavelengths are reflected the most between 20 nm and 50 nm. From

0nm to 20 nm, there is a rapid increase from 80 to 255; after 50 nm, there is a gap, but there

is some decrease: at 75 nm, the values are around 190, and increasing to 210 at 100 nm. The

red channel peaks between 30 nm and 60 nm. There is no evidence whether it goes on to higher

thicknesses or whether the values decrease already at 60 nm; for sure they are between 60-110

lower for 75-110 nm thick flakes. Here again, there is a rapid increase between 10 nm and 30 nm,

extending over the whole range.
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5.3.2 Measured Contrast NbSe2

For NbSe2, the contrast has been computed in the same way, according to equation (61). The

results are displayed in Figure 16. Like the FePS3 contrast values, have been fitted using a

damped sinusoidal function in the same form as equation (62). The equations are

Red: C = 2.577e−d/44.02 cos (
2π

128.98
· d+ 0.521)− 0.741 (68)

Green: C = 3.466e−d/23.85 cos (
2π

138.07
· d+ 0.844)− 0.911 (69)

Blue: C = −3.161e−d/40.15 cos (
2π

1578.43
· d+ 1.470) + 0.124 (70)

Greyscale: C = 2.175e−d/30.082 cos (
2π

132.43
· d+ 0.735)− 0.618 (71)

The r2 values have been computed for these functions and are shown in the graph.

Figure 16: Measured contrasts NbSe2

The data behaves analogously to the data described in section 5.3.1. The maxima and minima

obtained from the fit-functions are for the red channel: minimum at 44.9 nm; green channel:

minimum at 34.1 nm; blue channel: maximum at 65.1 nm. Note that the r2 value for the blue

channel is relatively low; for the others, the r2 value is above 0.88.
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5.3.3 Measured Colours NbSe2

From the contrast fit-functions, the measured colours have been reconstructed and displayed in

Figure 17. Again, the equation for the reflected intensity IR = (1−C)IRs was used, where IRs

denotes the measured substrate value for each channel. The thinnest flakes are blue; they then

start to turn green at 10 nm, reaching a pale yellowish at 35 nm to 50 nm thickness. There is a

smooth transition to a greyish green between 55 nm and 100 nm thickness.

Figure 17: Measured colours NbSe3
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5.4 Computing the Theoretical Model for NbSe2

The theory model for NbSe2 has been computed in the same way as for FePS3, adapting the

refractive index (taken from https://refractiveindex.info/). Since the experimental data

only goes up to 100 nm thickness, the computations were done for the same range.

5.4.1 Predicted Contrast NbSe2

(a) Predicted contrasts NbSe2 (1-10 nm) (b) Predicted contrast NbSe2 (0-100 nm)

(c) Predicted contrasts NbSe2 (0-100 nm; 101 lines)

Figure 18: Computing the predicted contrast

Figure 18 shows the results of the computations for contrast; once for the very thin flakes

(Figure 18a), once with respect to the thickness of the flakes (Figure 18b), and finally once in

3 dimensions to show the evolution of the Contrast over thickness per wavelength (Figure 18c).

Note: values close to 1 indicate low intensity, contrast minima correspond to peaks in light

intensity.

Again, there is a linear decrease (increase respectively) in contrast for the very thin flakes,

especially for wavelengths around 530 nm and 650 nm. In Figure 18b, the green wavelength
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begins with exactly this linearly decreasing contrast up to around 20 nm, reaching a minimum

of -3.6 just below 50 nm, then again increasing until 100 nm, even going above 0. The blue colours

are strong until approximately 35 nm, then the contrast peaks at 60 nm, before decreasing again.

Red colours are predicted to start with low intensity (0-10 nm), then increasing (again, almost

linear between 20 nm and 35 nm), peaking at 65 nm thickness and decreasing again. Figure

18c completes Figure 18b by including the whole wavelength spectrum from 400 nm to 680 nm.

Note that the theory model starts with 0 contrast at thickness 0 nm.

5.4.2 Predicted Colours and Reflected Intensity NbSe2

From the predicted reflected intensity (Figure 19a, the predicted colours have been obtained

and are shown in Figure 19b. From a slight purple, the colour develops to a light blue within

the first 35 nm. It then turns gradually into orange at 70-80 nm, via green and yellow. Further,

the colour develops to red and pink between 90 nm and 100 nm.

(a) Predicted RGB intensity NbSe2 (b) Predicted colours NbSe2 (0-100 nm)

Figure 19: Predicted colours and reflected intensity for NbSe2
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6 Discussion

6.1 Analyzing Results of FePS3

In section 1, the research question was stated: ”How does the optical contrast and the colour

of a three-layer system, consisting of thin flakes of the insulator FePS3 and of the metal NbSe2

on SiO2/Si substrate, change, depending on the flake thickness?” The goal of this chapter is to

give an answer to the research question using the results as presented in section 5. Additionally,

the results are compared to literature, and the data is tested for utility in an applications.

6.1.1 Verification of Theoretical Model

In section 3, we have derived the following equation for the reflected intensity R, depending on

∆ϕi =
2πnidi

λ and ri,i+1 =
ni−ni+1

ni+ni+1
.

R = rtotr
∗
tot where rtot =

r01 + r12e
−i2∆ϕ1 + r23e

−i2(∆ϕ1+∆ϕ2) + r01r12r23e
−i2∆ϕ2

1 + r01r12e−i2∆ϕ1 + r01r23e−i2(∆ϕ1+∆ϕ2) + r12r23e−i2∆ϕ2

We further defined the contrast C = Rs−R
Rs

=
IRs−IR

IRs
. Both values and the resulting colours

were computed and displayed in appropriate graphs in section 5.

Colours

The colour stripes displayed in Figure 20 provide a way of comparing the results of the experi-

ment and the model, which is not very precise, but they are very intuitive and aid understanding

the subsequent Figures. In Figure 20, the blue channel of the theoretical model has been doubled

and all channels have been amplified by a factor of 1.3 due to reasons explained in section 5.

Figure 20: Measured and predicted colours per thickness for FePS3
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The key feature to notice on this graph is the thicknesses, to which a change in colour corres-

ponds. These are the same for both measured and predicted colours. Around 10 nm, 45 nm,

125 nm, 165 nm, there are significant changes of colour which appear in both colour stripes.

To a high degree, the colours are also similar; starting from a light blue between 10 nm, then

turning yellow/redish around 45-80 nm. However, for bigger thicknesses, the colours start to

deviate. They remain fairly similar until 125 nm, but then the prediction yields a light blue,

whereas green was measured.

The comparison drawn from Figure 20 suggests that the theoretical model gives first predictions

of which colours to expect, but they are not very accurate, especially from 125 nm onwards.

However, there is a great positive message: The ’Measured RGB values FePS3’ are very diverse

over thicknesses from 0nm to 200 nm. Given a sample with flakes of many different heights, one

should therefore be able to distinguish flakes of different heights quite accurately on the basis

of our measured results (see section 6.1.3).

Contrast

Figure 21 allows a more accurate comparison between the measured and the predicted contrast

values. 3 wavelengths (440 nm, 520 nm, 580 nm) have been selected from the continuous spec-

trum given by the theoretical model to represent the blue, green, and red colour channels of

the camera. The wavelengths have been chosen according to the peak sensitivity of cone cells

(which are responsible for colour detection) in the eye [6]. In this Figure, the blue channel has

not been doubled, and no brightness correction was applied.

Figure 21: Measured and predicted contrast per thickness for FePS3 (solid line: predicted;
dashed line: measured)

At first glance, the difference in amplitude is striking, especially for the green and red channel.

However, this is easily adjusted by the brightness calibration. What is far more interesting is

the comparison between the thicknesses, at which the predicted and measured contrast values

reach peaks or minima, and the period at which they are occurring: e.g. the minima just
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above 100 nm of the blue contrast channel coincides very nicely; however, because the period

of the measured contrasts is smaller, the maxima at around 60 nm and 150 nm do not coincide

anymore. Similarly for the green channel: the minimum at around 160 nm coincides, but the

maximum and the preceding minimum of the predicted and measured contrasts do not coincide

exactly. Only for the red wavelengths, the minima coincide quite precisely, but the maximum

is shifted a tiny bit. Therefore this graph provides evidence that the theoretical model is valid

only for a certain range of thicknesses, during which the peaks and troughs align. Note that

the minima and maxima of the theoretical model highly depend on the extracted wavelengths.

Varying them a tiny bit (around 5 nm) already results in a relatively big shift of the maxima

and minima. Since the period of the measured and predicted functions is not exactly the same,

using slight shifts can be used to configure the theoretical model such that it approximates the

contrast for the thickness of interest very well.

6.1.2 Literature Comparison

In order to gain significance, this study should be supported by previous findings by other

research groups, with the ultimate goal of extending their findings. B. Ma et al. [11] used a

very similar method of determining the thickness of 2D materials by optical contrast for different

materials (Graphene, hexagonal boron nitride (h-BN) and molybdenum disulfide (MoS2)). They

focused on very thin flakes, ranging from one to ten layers of atoms. Their theoretical prediction

for h-BN was based on the following equation:

R =

(
r01e

i(∆ϕ1+∆ϕ2) + r12e
−i(∆ϕ1−∆ϕ2) + r23e

−i(∆ϕ1+∆ϕ2) + r01r12r23e
i(∆ϕ1−∆ϕ2)

ei(∆ϕ1+∆ϕ2) + r01r12e−i(∆ϕ1−∆ϕ2) + r01r23e−i(∆ϕ1+∆ϕ2) + r12r23ei(∆ϕ1−∆ϕ2)

)2

(72)

This equation is very similar to the one we developed, with some slight twists. Moreover, the

SiO2 layer in the SiO2/Si substrate is 300 nm thick. In their paper, they show Figure 22a - the

results of computing their equation for 10 h-BN layers (thickness per layer = 0.333 nm [11]).

Figure 22 allows a comparison of their graph to the results of our investigation. Both graphs

show a minimum and a maximum - the ones of h-BN occuring at 30-40 nm shorter wavelengths.

This makes sense: h-BN has a refractive index slightly lower than the one of FePS3. Light can

therefore travel faster through h-BN. Hence the phase shift at the same flake thickness is less for

h-BN than for FePS3. If the phase shift is lower, shorter wavelengths are amplified/canceled out,

since after the time interval, at which the ray, which went through the material, returns back

to the surface, the ray being directly reflected has had less time to ’develop’ (develop: imagine

a dot travelling along a sine curve). For shorter wavelengths, this time interval is enough to

’develop’ over one/multiple whole wavelength(s), which causes them to be amplified. For longer

wavelengths, the duration of the interval is not enough to ’develop’ over a whole wavelength,

and therefore they are amplified less or even canceled (as long as the frequency/energy of the

photons remains constant). The increased thickness of the SiO2/Si layer counteracts this effect,

but the ratio between the refractive indices dominates the ratio between the thicknesses within

the substrate.
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(a) Theoretical model by B. Ma et al. [11] (b) Predicted contrasts FePS3

Figure 22: Literature comparison

More importantly, both models predict a linear de-/increase of contrast for very thin flakes.

This is very useful for applications, because it allows precise identification of thickness. But:

”Note that the largest layer numbers of [...] h-BN that can be identified through this method

is [...] 10, respectively, since the changes of the image contrasts are less and less obvious with

further increasing the layer number.” [11] B. Ma et al. faced problems: after a few layers (in

their case 10 layers ∼= 3nm ), the linearity is not present anymore. We are lucky: for FePS3 with

a 285 nm layer of SiO2, the linearity continues on for at least 30 nm - allowing for a slight bend

in the curve, we can even get to around 45 nm, each layer having its own specific contrast. As

described above, the theoretical model can be customised such that it fits the very thin flakes

nicely.

6.1.3 Data Patterns for Application

As stated above, the theoretical model’s precision is debatable concerning a broad spectrum

of thicknesses. If an overview over a big range of thicknesses is needed, experimental data is

preferable. Such an overview is needed for the core of the application: entering RGB values and

returning the height. For this application, a map of thickness to a unique RGB value is needed.

The value of one wavelength or colour itself is not enough: Figure 23 shows the thicknesses at

which, e.g. for green colours, the RGB values computed by the fit-functions are similar and

where they are distinguishable. Two distinct intensity values for a colour are separated by at

least a difference of 10. This critical dimension is referred to as ’error factor’. It is chosen in

such a way, that if the difference between two intensity values is bigger than the error factor,

a confusion should not happen. For a difference smaller than the error factor, the probability

of a confusion rises. This probability is indicated as a change in colour: a blue pixel indicates

a very low chance of confusion; a yellow pixel indicates that a confusion is very probable. The

error factor has been set to 10 because the standard deviation during the colour measurements

were almost exclusively below 10.

Surely, there is a line going from the bottom left to the top right in each plot, since the same

thickness is associated with a single RGB value (the map is bijective). The other yellow or orange

lines in the red, green and blue channel graph indicate there are confuseable thicknesses, if only

one colour is used. Hence the contrast alone is not enough to exactly determine the thickness.
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Figure 23: Confuseable thicknesses FePS3

However, using the average of the differences between two RGB values, which correspond to to

two thicknesses, for each colour channel, the probability for a confusion of any thickness with

another is very low, as displayed in the bottom right graph: Because there are only blue pixels

except for a thin diagonal, the RGB values for every thickness are unique and distinct. The

graph therefore suggests, that confusions can be avoided for thicknesses up to 200 nm using the

average difference between the RGB values for each colour channel.
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6.2 Analyzing Results of NbSe2 and Literature Comparison

The experiment described in section 4 was repeated for NbSe2 to further examine our assump-

tions: Is there significant difference, if the top layer of our structure is a metal instead of an

insulator? The following comparison between experimental and theoretical results suggests an

answer.

6.2.1 Verification of Theoretical Model

Figure 24: Colour comparison

The measured and predicted colours are shown in Figure 24. There is a strong difference

between them. Although both start blueish (a very strong blue was measured, more purple was

predicted), the light blue ends 20 nm before it was predicted to end. Instead, a slow change to a

pale yellow occurs. This colour never even appears in the predicted colours - they continue from

light blue to greenish to orange, red and pink. The key difference to the results of FePS3 is that

the colour changes do not occur at the same thicknesses. Therefore the divergence between the

predicted and the measured colours is not due to differences in the light intensity spectrum.

Plotting the predicted and the measured contrast per thickness for certain wavelengths (cor-

responding to the colour channels) on the same axes, as shown in Figure 25, reveals the error

again: While the predicted contrast for the short wavelength changes strongly, the measured

contrast remains almost constant. The predicted and measured contrasts for the green and red

wavelengths/channels are relatively similar up to about 40 nm, then they diverge.

Note that the amplitude difference is probably due to spectral differences. The distribution of

contrast over thickness is not. Interestingly, these contrasts from the green and red channels have

a y-intercept greater than one, corresponding to an intensity lower than 0. One would expect a

contrast of 0 at a thickness of 0 nm, corresponding to the colour of the substrate, assuming that

the transparency of the flakes increases. There is a chance, that this is a measurement error due

to some edge/contrast enhancement of the camera used to take the images, especially since thin

flakes are often very small, even though attention was paid to get as raw images as possible; As

no flakes below 5 nm were found, this remains an open question for further investigations.
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Figure 25: Measured and predicted contrast per thickness for NbSe2 (solid line: prediction,
dashed line: measured)

The fact that NbSe2 does not behave as predicted by their theoretical model has also been

found by M. M. Benameur et al. [2]. They compared experimental results to the theoretical

model described by equation (72) (section 6.1.1). Therefore the theoretical model presented in

our report does not contradict this previous finding.
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6.2.2 Data Patterns for Application

Even though there is a difference between the theoretical model and the experimental findings,

researchers are still interested in NbSe2 for many other purposes. Whether or not the thickness

NbSe2 flakes can be determined by optical contrast has not been clarified in previous sections.

Figure 26: Indistinguishable thicknesses NbSe2

Figure 26 shows the absolute value of the difference in reflected intensity between any two

thicknesses and is based on our contrast fits. If two values are the same, they appear as yellow.

The bigger the difference, the darker. If the difference is greater than 10 and smaller than -10,

it is coloured dark blue. This cutoff has been set, since the standard deviation of the colour

measurements was always less than 10. The difference, which codes for the colour in the bottom

right graph, is the average value of the differences for each channel. Taking the average reduces

the amount of confuseable thicknesses. However, from about 60 nm thickness upwards, the

diagonal starts to diverge. This implies, that the RGB values for thicker flakes are not unique

and there is a high chance of confusion between different thicknesses. Therefore the method of

thickness identification by optical imaging can only work well for thin metallic 2D materials.
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6.3 Error Analysis

Throughout any experiment, small errors and uncertainties appear. The goal of this section is

to analyse the reliability of our measurements. There are three main kinds of errors, systematic

errors, measurement uncertainties, and procedural errors:

6.3.1 Systematic Errors

Consistent biases, affecting all measurements of a kind, are called systematic errors. The main

such error, which occurred during our experiment, were the factors, which changed the bright-

ness of the microscope camera. Attention was paid to the settings of the camera, but the

brightness changed nevertheless - these factors were beyond our control. Calculating the con-

trast with respect to the substrate brightness allowed a slight correction; Further studies should

take care to control even more factors to create results, with are replicable on their microscope.

Another systematic issue is caused by the differences in emitted and recorded light spectra. The

theoretical model yields the ratio of reflected over incoming intensity. Light sources, such as the

one in the microscope, do not emit the same intensity over all wavelengths - nor are cameras

or eyes equally sensitive over the whole visible spectrum. By doubling the blue channel, and

amplifying all channels by a factor of 1.3, this issue was more or less fixed - future studies could

analyse the spectra and model them, such that they can be implemented into the theoretical

model. Since this is a very tedious job and, because of its high specificity (only for one kind of

microscope), it is perhaps more efficient to create a sample data set and customized contrast fit-

functions. The same holds for colour distortion by the lens - in the case of our microscope, the

100X magnification lens was not used, because there was a significant magenta shift compared

to the other lenses. It has to be expected that every lens has its own permeability spectrum;

and thus increasing the advantage of a sample data set.

6.3.2 Measurement Uncertainty - Gaussian Error Propagation

Every measurement is subject to small errors, due to the finite precision of measuring instru-

ments. For the height measurements with the AFM, the way in which errors add up has been

examined properly and is implemented into Gwyddion. From the height data, the error of fits

are computed automatically. For the measurements of contrast, the estimation of the error is

more complex. First, the values from 25 pixels IP were averaged to one RGB value IR. The

standard deviation of this RGB value is denoted as

σR =

∑
(IR − IP )

2

25
. (73)

In a second step, a Gaussian Error Propagation was derived for the equation for the contrast

C. Hence, the error for contrast is defined as

σC =

√
σ2
Sav

(
∂C

∂Sav

)2

+ σ2
R

(
∂C

∂IR

)2

where C =
Sav − IR

Sav
and Sav = IRs . (74)
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Inserting the partial derivatives yields:

σC =

√
σ2
Sav

(
− IR
S2
av

)2

+ σ2
R

(
1

Sav

)2

=

√
σ2
Sav

I2R
S4
av

+
σ2
R

S2
av

(75)

This value was computed for every sample using Microsoft Excel and they are shown as the

vertical bars in Figure 11 and 16.

6.3.3 Procedural Errors and Improvements

If this study shall be replicated or extended, considering the following points can enhance

precision and efficiency of the data collection. Firstly, the number of folds of the blue tape

strongly influences the size and thicknesses of the flakes. Preliminary experiments should be

conducted to find out the optimal number. Secondly, further studies should aim for an overall

low image brightness to prevent plateauing of the RGB values at 255. Therefore a camera with

a high dynamic range and a better microscope are beneficial. Finally, a high AFM resolution

values a lot and is worth the time: The higher the resolution, the lower the noise for thin flakes.

6.4 Significance

All in all, there have been three main insights gained by the experiment and the theoretical

model. Firstly, the contrast of FePS3 and NbSe2 on SiO2/Si substrate changes strongly, de-

pending on the flake thickness. The results in section 5.1 and 5.3 describe, how the dependence

looks like and thus answering the research question. Secondly, the theoretical model describes

the colour and contrast of the insulator (FePS3) well, particularly for small ranges of thickness.

However, it is not applicable to the metal NbSe2. This confirms that the assumption for the the-

oretical model, the material being insulating, plays a significant role in the interaction between

light and matter. Finally, it has been shown for FePS3 and for NbSe2, that the combination

of the red, green and blue channels suffices to create a specific map up to 200 nm and 60 nm

respectively, assigning each thickness a unique colour.

With these results, the feasibility of the method to determine the thickness of FePS3 and

NbSe2 flakes using optical imaging is demonstrated. Because of the differences in light spectra,

lenses and camera sensor, calibration is necessary. Our fit-equations for the contrast C could

be copied and multiply them by self-measured substrate values IRs in the equation for the

reflected intensity IR = (1 − C)IRs for each channel. For more precise results, doing sample

measurements is recommended. Since our results strongly suggest a sinusoidal behaviour, a

few sample measurements are enough to create accurate fitting functions. For researchers, this

helps to speed up the thickness determination of such flakes enormously and reduce the costs

of a lab, since expensive instruments as the AFM are required only for calibration.

However, the determination of thickness by optical imaging by eye is not as precise as an AFM

(or similar) measurement. Therefore in the next section, an application is created and its

accuracy for FePS3 is tested. If the accuracy were too low, it can still be used to identify flakes

of a range of thicknesses - which reduces the number of exact measurements and thus the time

required.
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7 Application and further Ideas

7.1 Production of 2D materials

Current research is very interested in 2D materials because of their extraordinary properties.

To conduct experiments with 2D materials, their thickness must be known, as it has a strong

influence on the properties [3, 11]. The method of exfoliation used in this report is quick

and simple, but it creates small flakes of various thicknesses. Measuring the thickness using

expensive devices such as an AFM takes a lot of time because of the low output rate. The

approach to determine the thickness of FePS3 and NbSe2 by optical imaging, which is discussed

in this report, is much faster. For example, an AFM needs 8.5min to scan a 30 µm × 30 µm
square in good quality. With a camera and an optical microscope, a single picture can be used

to estimate the thickness of hundreds of flakes (depending on the resolution of the camera and

magnification of the microscope) within a few seconds. This approach has the potential to

facilitate and speed up the production of 2D materials for research. This goal can be achieved

through comparing the colours from the images to a reference colour stripe by hand. The aim

of this section is to develop a more precise application, written on Python, which can convert

RGB values into an estimate of thickness and assert its reliability for FePS3.

7.2 Working Principle of the Application

The purpose of the application is to find the corresponding thickness to an input RGB value.

Firstly, reference RGB values are calculated based on some reference function, relating thickness

to contrast for the red, green and blue colour channel (e.g. the fitted sinusoidal functions

from above), for a certain range of thicknesses. For tests later on, this range has been set

corresponding to the boundaries of the fitting functions (0-200 nm for FePs3). Again, the

equation IR = (1−C)IRs is applied, where C is a function of the thickness. For the application,

IRs are measured substrate values. This is a very simple but effective configuration to account

for differences in lighting, camera sensors and microscopes.

From the input value, the difference between the value of each channel and the corresponding

reference red, green or blue value is calculated separately for each thickness. What results, is

a list, which contains the difference for all colour channels for every thickness. The thicknesses

associated with the lowest differences can now be identified. The amount of outputs can be

customised by including a defined error range. This error, called cutoff, denotes the number

of units on top of the minimal difference, up to which differences are accepted and thicknesses

in this range are then indicated. If the cutoff is higher, the application yields more possible

thicknesses, which increases the chance, that the correct thickness is in the output, but decreases

the precision.

As shown in section 6.1.3 and 6.2.2, there may be many indistinguishable thicknesses if only

one colour channel is considered. A solution is, that the application calculates the average of

the differences of all channels for every thickness; thus similarities between thicknesses in one

channel are counterbalanced by differences in other channels. This works only because the

indistinguishable thicknesses vary greatly from channel to channel. There is another possible

approach: instead of the average, the highest difference out of the three from the colour channels
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for every thickness is used as critical difference when finding the minimal difference over all

thicknesses. The benefits and problems of the two approaches are compared in section 7.3.

The principle underlying the application is summarised in Figure 27. The differences at each

thickness between an input RGB value and the reference RGB values, which are determined by

the contrast fit-functions, are displayed. In Figure 27a, the average difference is indicated as

a black curve, whereas in Figure 27b, the maximal difference is highlighted. Between the two

graphs, the input RGB value is shown (blue).

(a) Black curve = average difference (b) Black curve = highest difference

Figure 27: Principle of the application; black horizontal line = cutoff

7.3 Evaluation of Software - Benefits and Limitations

In order to examine the advantages and disadvantages of taking the average or the maximal

difference, Figure 28 and Figure 29 have been generated using the measured heights and RGB

values of FePS3 as inputs. A histogram of all the output thicknesses is shown in Figure 28. Since

a higher cutoff always contains the output thicknesses of lower cutoff, the results for different

cutoffs were stacked behind each other. The colours allow distinction between the cutoffs (0-25).

The input thicknesses are coloured in red.

(a) Red = measured thickness,
other colours = output thickness

(b) Red = measured heights,
other colours = calculated heights

Figure 28: Histograms of calculated and measured thicknesses per cutoff.
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The number of thicknesses yielded using the average colour difference is much greater than the

number of outputs by the maximal difference (by a factor of approx. 1.5). The number of

thicknesses, at which the difference is below a certain cutoff, is higher when using the average

difference, since the average difference is always lower or equal to the maximal difference. Fur-

ther, from Figure 28, it can be deduced, that the maximal difference is generally more specific,

because the spread of yellow colours is less broadly distributed at low frequencies. Up to around

100 nm, the peaks of the low cutoffs coincide with the input thicknesses. Only around 150 nm,

there is a significant distance between the indicated and the measured thicknesses. The inputs

close to 200 nm are yielded only for very high cutoffs. There, the average difference has its

benefit: Even at relatively low cutoffs, it yields the correct thickness of almost all inputs. As a

trade-off, the amount of output thicknesses is high.

Figure 29 shows two kinds of ratios: the number of correctly identified samples divided by

the number of inputs (here: 124). Ratios of this kind are denoted by ’id. samples’, called

the integrity of the output and are distinguished between average (av) and maximal (max)

difference operating method. The indicated uncertainty range (e.g. ±2.5 nm) is used for the

classification as identified sample: If the measured height is not contained exactly in the output

thicknesses, but a thickness, which differs from the measured thickness only by the denoted

amount of uncertainty, is included, then the sample is called identified. The second kind of

ratio in Figure 29 is the number of output thicknesses which differ at most by the uncertainty

range from the measured thickness divided by the total number of output thicknesses. Let us

call this ratio the quality of the output. In the graph, it is denoted as ’av’ or ’max’.

integrity =
#correctly id. samples

#inputs
quality =

#output thicknesses in uncertainty range

#output thicknesses

(76)

Figure 29: Integrity vs. quality of average (av) and maximal (max) differences
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The Figure 29 shows that approximately 45% of the output thicknesses are at least as close

as ±2.5 nm to the actual thickness. Further computations have shown that >80% (for max,

>70% for av.) of the output thicknesses are at least as close as ±5.5 nm. Overall, the maximal

difference leads to a higher quality of the output than the maximal difference. However, the

integrity of the output is better using the average difference. The two methods can therefore be

recommended for various situations: If precise results (±0.5 − 2.5 nm) are needed, there is an

easy accessible AFM and a lot of time available, using the average difference is suitable. This

method is also beneficiary for very expensive materials, where missing out on flakes would be

a big loss. If the highest precision is less important, the time short or the AFM less available,

the maximal difference is the better option.

Finally, Figure 29 indicates, that, using the maximal difference, the quality is similar for cutoffs

0 and 2-3, while the integrity is much higher. There is no evidence that this is not an outlier due

to our specific set of heights. However, if ratified by other research groups, this may increase

the utility of the method of thickness identification by optical imaging to an even higher level.

Overall, the cutoff serves as an balancing factor between the two methods. For example, if an

AFM is easily accessible, the maximal difference can be applied using a higher cutoff than what

would be useful for average difference.

7.4 Outlook

From a list of RGB values and a measured substrate RGB value, our application can generate

lists of thicknesses, to which the RGB values are likely to correspond. The application can

therefore be used to analyse images and indicate thicknesses of a desired height. To fully

automatise the identification of flakes of a desired thickness, an optical microscope with a

motorised sample platform would be required. Then, an application can be written, which,

after the sample has been loaded, scans over it, producing a high resolution image of the

sample, and then use our application to mark the positions of flakes of desired thickness. Thus

hours of searching for the right flakes can be saved.

To achieve a more precise application, it has been suggested by K. Kitagawa [8] to use a camera,

which is more sensitive and is able to distinguish more colours (10-bit). Subnanometre precision

could be expected.

The precision of the application can probably be enhanced even more if a simple learning

algorithm is included as an addition after the data fit: As training, a list of RGB values and the

corresponding measured heights, a learning factor α and the fit-functions are required. From

the fits, reference RGB values are computed for every thickness. The application then receives

the RGB values as an input and yields some output thicknesses. The reference RGB value for

the output thicknesses, which are close to the actual thickness, are changed by α times the

difference between the reference and the input value, such that the difference decreases. the

reference RGB values for the output thicknesses, which are far away form the actual thickness,

are changed by the same value, but with the opposite sign, such that the differences increase.

Thus, the precision of the reference RGB values can be enhanced, bringing the utility of thickness

identification by optical imaging to a new level of precision.
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8 Conclusion

In section 1, two central questions were asked: ”How does the optical contrast and the colour

of a three-layer system, consisting of thin flakes of the insulator FePS3 and of the metal NbSe2

on SiO2/Si substrate, change as a function of flake thickness?” and ”Can the results be used

to predict thicknesses for exfoliated insulators?”. To answer these two questions, a theoretical

model has been derived from Maxwell’s equations, experimental data was collected and evalu-

ated, and a Python script has been written to enable the integration of thickness identification

by optical imaging in the production workflow of researchers.

Our results confirm, that the theoretical model can describe the contrast and colour of an insu-

lator on a two-layered substrate well. The correlation attests, that the underlying assumptions

of the models are well chosen - especially, since there is a significant divergence between the

experimental and theoretical results for the conductive material.

From the experimental results of FePS3, an application was developed, which is able to convert

a list of RGB values into a list of thicknesses, to which the colours correspond very likely. A

precision, resulting in above 80% of the output thicknesses diverging less than ±5.5 nm from

the actual height and even 45% of the output within a range of ±2.5 nm, was achieved. This

confirms the high practicality of thickness identification by optical imaging, providing a fast,

non-invasive, large-scale and cheap method to determine the thickness of 2D materials.
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9 Personal Motivation and Reflection

When I started to search for a topic for my matura paper, I had one crucial criterion: the work

shall have a real benefit for any group of people. Even after talking to many people from both

areas, I had some ideas developed, but non of them was fully convincing. Finally, a friend and

leader from the Swiss Physics Olympiad enabled me to get in contact with a doctoral student

at the Department of Materials of the ETH Zürich. Together we developed a rough aim for this

study, trying to find the areas, where I could create significant benefit for his research. I was

aware that the project was at the upper limit of effort for this particular assignment - I had

already prepared a plan B. Looking at the results, I am very happy of my decision to pursue

this aim, because I was able to create an application, which has an actual use.

For any future studies, if I shall do them, I need more endurance in the literature research, to

figure out the detailed insights, which have been found already, and the problems, which occur

often. Furthermore, a greater set of preliminary experiments and more in detail planning of

the experiment could perhaps have prevented the differences between day one and two of the

data collection for FePS3. Apart from that, I really appreciated the back and forth between

the theoretical model and the experimental results, which didn’t match at all in the beginning

because of errors. This forced me to revise and question every step in detail - and finally led to

a much more in depth understanding of what is shown in this report.

In the process of satisfying my criterion, I learned a lot - programming and data analysis in

Python, literature research for the theoretical model, planning and conducting experiments, and

incredibly many smaller insights and experiences. On top of that, I developed a fascination for

2D materials and their countless applications, which will continue to flourish for a long time.
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Used Technologies

The data evaluation has been done using Gwyddion Version 2.63, Spyder (with Python 3.11.3),

Microsoft Excel (Version 2308 Build 16.0.16731.20182), and Desmos Scientific Calculator. Small

parts of the Python code, mostly concerning visual improvements for the graphs, are inspired

by responses from ChatGPT Version 3.5.
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Appendix

The following points provide a summary of the procedure:

• Substrate Preparation and Exfoliation

• Optical and AFM Imaging

• Processing AFM images (Gwyddion commands: Level data by fitting a plane through
points, Shift minimum data value to zero, Extracting profiles along arbitrary lines)

• Drawing and fitting profiles, recording height and error

• Obtaining RGB values from the same positions

• Levelling the RGB values, mean and std.n per 5× 5 pixels

• Computation of contrast

• Graphs for measured values (intensity and contrast), curve-fit

• Reconstruction of colours from contrast fit-functions

• Colour stripes

• Theoretical model: computing reflectivity and contrast

• 3D plots of reflectivity and contrast generated.

• Theoretical model: computing colour and calibration; graphing

• Repetition of process for the other material

The following pages contain:

Optical images FePS3 – page 56

Optical images NbSe3 – page 57

AFM images FePS3 – pages 58-60

AFM images NbSe2 – page 61

Python scripts for graphs and applications from page 62 onwards.
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1 import numpy as np

2 import cv2

3 import matplotlib.pyplot as plt

4

5 path = r’Used_Images\FePS3_514.png’

6 x=1820

7 y=1100

8 imag= cv2.imread(path , cv2.IMREAD_COLOR)

9 (b, g, r) = cv2.split(imag)

10 img= cv2.imread(path , cv2.IMREAD_GRAYSCALE)

11 L= [r,g,b,img]

12 La=[’r’,’g’, ’b’,’all’, ’finish ’ ]

13 M=[0,0,0,0]

14 ST=[0,0,0,0]

15 for i in range (5):

16 print(La[i])

17 m=[]

18 for p1 in range (5):

19 for p2 in range (5):

20 if i<4:

21 print(L[i][p1+y][p2+x])

22 m.append(L[i][p1+y][p2+x])

23 else: img[p1+y][p2+x]=0

24 if i<4:

25 M[i]=sum(m)/len(m)

26 ST[i]=np.std(m)

27 for j in range(len(M)):

28 print (M[j])

29 print (ST[j])

30 for i in range(int (350)):

31 for j in range (450):

32 img[i*5][j*5]=0

33 if i<= 389/20 and j <=524/20:

34 img[i*20][j*20]=255

35 print(x)

36 print(y)

37 plt.rcParams[’figure.dpi’]=700

38 plt.imshow(img , cmap=’gray’)

39 plt.show()

Listing 1: Collecting the RGB values from pictures

1 import matplotlib.pyplot as plt

2 import numpy as np

3 import cmath

4 from scipy import interpolate

5 from scipy.optimize import curve_fit

6 from matplotlib import cm

7 import pandas as pd

8

9 n0=1

10 n1 =2.41+0.1j #refractive index of the flakes; for NbSe2 , the data was

treated as for Si.

11 thinnest_layer =2E-9

12 max_layers= 100

13 lambdmax =680E-9

14 lambdmin =400E-9

15 excel_file = "FePS3 Contrasts.xlsx"
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16 plt.rcParams[’figure.dpi’]=300

17 colormap = plt.cm.viridis

18

19 # Load refractive index data

20 data = np.genfromtxt(’Si.txt’)

21 x = data [: ,0]*1E-9

22 data_n_Si = data [:,1]

23 data_k_Si = data [:,2]

24 f_n_Si = interpolate.interp1d(x, data_n_Si)

25 f_k_Si = interpolate.interp1d(x, data_k_Si)

26 data = np.genfromtxt(’SiO2.txt’)

27 x = data [: ,0]*1E-9

28 data_n_SiO2 = data [:,1]

29 data_k_SiO2 = data [:,1]

30 f_n_SiO2 = interpolate.interp1d(x, data_n_SiO2)

31 f_k_SiO2 = interpolate.interp1d(x, data_k_SiO2)

32 df = pd.read_excel(excel_file)

33 x = df[’Heighttt ’]. values

34 yr = df[’ConR’]. values

35 yg =df[’ConG’]. values

36 yb =df[’ConB’]. values

37

38 def damped_sinusoid(t, A, lambda_ , omega , phi , C):

39 return A * np.exp(-lambda_ * t) * np.cos(omega * t + phi) + C

40 popt_r , pcov = curve_fit(damped_sinusoid , x, yr , p0=[10, 1E-3, 1E-2, 0,

0])

41 popt_g , pcov = curve_fit(damped_sinusoid , x, yg , p0=[10, 1E-3, 1E-2, 0,

0])

42 popt_b , pcov = curve_fit(damped_sinusoid , x, yb , p0=[10, 1E-3, 1E-2, 0,

0])

43 def Red_measured_FePs3 (x): #x=thickness

44 r_conmes= damped_sinusoid(x, *popt_r)

45 if r_conmes >1: r_conmes =1

46 return (1-r_conmes)*91 #here , substrate values are included (91)

47 def Green_measured_FePs3 (x): #x=thickness

48 r_conmes= damped_sinusoid(x, *popt_g)

49 if r_conmes >1: r_conmes =1

50 return (1-r_conmes)*99 #here , substrate values are included (99)

51 def Blue_measured_FePs3 (x): #x=thickness

52 r_conmes= damped_sinusoid(x, *popt_b)

53 if r_conmes >1: r_conmes =1

54 return (1-r_conmes)*231 #here , substrate values are included (231)

55 def getn_Si(lam):

56 n_Si = f_n_Si(lam)

57 k_Si = f_k_Si(lam)

58 return n_Si + k_Si*1j

59 def getn_SiO2(lam):

60 n_SiO2 = f_n_SiO2(lam)

61 k_SiO2 = f_k_SiO2(lam)

62 return n_SiO2 + 0* k_SiO2 *1j

63 def phi (d, n1 , lam):

64 return (2*(np.pi)*n1*d)/(lam)

65 def phib (d, n2 , lam):

66 return (2*(np.pi)*n2*d)/(lam)

67 def calculate_RS(lam , r2 , r3 , d2 , n2):

68 numerator= r2+ r3*cmath.exp(2j*phib(d2,n2, lam))

69 denominator= 1+r2*r3*cmath.exp(2j*phib(d2,n2, lam))

70 R=( numerator/denominator)
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71 return R* np.conjugate(R)

72 def calculate_C(lam , d1 , d2):

73 n3 = getn_Si(lam)

74 n2 = getn_SiO2(lam)

75 r01=(n0 -n1)/(n0+n1)

76 r23= (n2 - n3) / (n2 + n3)

77 r02= (n0 - n2) / (n0 + n2)

78 r12= (n1 - n2) / (n1 + n2)

79 numerator = r01 + r12*cmath.exp(2j*phi(d1,n1, lam)) + r23*cmath.exp

(2j*(phi(d1 , n1 , lam)+phib(d2 ,n2 , lam))) +r01*r12*r23*cmath.exp

(2j*phib(d2 ,n2 , lam))

80 denominator = 1+r01*r12*cmath.exp(2j*phi(d1,n1, lam)) + r01*r23*

cmath.exp(2j*phi(d1,n1, lam) +2j*phib(d2,n2, lam)) + r12*r23*

cmath.exp(2j*phib(d2, n2, lam))

81 r = numerator/denominator

82 R = r * np.conjugate(r)

83 RS= calculate_RS(lam , r02 , r23 , d2 , n2)

84 C= (RS -R)/RS

85 return C + R*1j

86 def legend (lay):

87 L=[]

88 for i in range(max_layers +1):

89 L.append(str(lay*( max_layers -i)) + " nm")

90 return L

91 def legendnormal (lay):

92 L=[]

93 for i in range(len(lay)):

94 L.append(str(lay[i])+ " nm")

95 return L

96 def wavelength_to_rgb(wavelength , contrast): #Approximation wavelength

to RGB

97 gamma = 1

98 intensity_max = 255

99 if 380 <= wavelength < 440:

100 R = -(wavelength - 440) / (440 - 380)

101 G = 0.0

102 B = 1.0

103 elif 440 <= wavelength < 490:

104 R = 0.0

105 G = (wavelength - 440) / (490 - 440)

106 B = 1.0

107 elif 490 <= wavelength < 510:

108 R = 0.0

109 G = 1.0

110 B = -(wavelength - 510) / (510 - 490)

111 elif 510 <= wavelength < 580:

112 R = (wavelength - 510) / (580 - 510)

113 G = 1.0

114 B = 0.0

115 elif 580 <= wavelength < 645:

116 R = 1.0

117 G = -(wavelength - 645) / (645 - 580)

118 B = 0.0

119 elif 645 <= wavelength <= 780:

120 R = 1.0

121 G = 0.0

122 B = 0.0

123 else:
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124 R = 0.0

125 G = 0.0

126 B = 0.0

127 factor = 1 #contrast * (0.3 + 0.7 * (1.0 - np.exp(-(( wavelength -

480) / 80) ** 2)))

128 R = (intensity_max * (R * factor) ** gamma)

129 G = (intensity_max * (G * factor) ** gamma)

130 B = (intensity_max * (B * factor) ** gamma)

131 return R, G, B

132 def calculate_Contrasts(wavelengths , thickness):

133 C_real = []

134 R_real = []

135 d_2D=thinnest_layer*thickness

136 d_SiO2 = 285E-9

137 for wavelength in wavelengths:

138 C_real.append(calculate_C(wavelength , d_2D , d_SiO2).real)

139 R_real.append(calculate_C(wavelength , d_2D , d_SiO2).imag)

140 plt.figure (1)

141 plt.plot(wavelengths *1E9 , C_real , color=colormap (( thickness/

max_layers)))

142 plt.figure (4)

143 plt.plot(wavelengths *1E9 , R_real , color=colormap (( thickness/

max_layers)))

144 plt.title(’Predicted RGB Values ’)

145 return R_real , C_real

146 def calculate_weighted_av_RGB (R,G,B,r,g,b, contrast ,subcon):

147 r+=R*contrast

148 g+=G*contrast

149 b+=B*contrast

150 return r,g,b

151

152 Reds =[]

153 Greens =[]

154 Blues =[]

155 plt.figure (1)

156 plt.figure (2)

157 wavelengths = np.linspace(lambdmin , lambdmax , num=int(( lambdmax -

lambdmin) / 1E-9) + 1)

158 fig=plt.figure(figsize =(11 ,7))

159 ax= fig.add_subplot (111, projection=’3d’)

160 figu=plt.figure(figsize =(11 ,7))

161 axu= figu.add_subplot (111, projection=’3d’)

162 conthick = [[] ,[] ,[]]

163 extractedlam = [440 ,520 ,580] #these Wavelengths are extracted from the

model

164

165 for o in range(1, max_layers +1,1):

166 Reflectivity , Contrast = calculate_Contrasts(wavelengths ,

max_layers +1-o)

167 #3D plots:

168 ax.plot(wavelengths *1E9 ,[( max_layers +1-o)*thinnest_layer *1e9 for _

in range(len(wavelengths))], Contrast , label=int(( max_layers +1-o

)*thinnest_layer *1E9), color=colormap ((o/max_layers)), linewidth

=1.5)

169 axu.plot(wavelengths *1E9 ,[( max_layers +1-o)*thinnest_layer *1e9 for _

in range(len(wavelengths))], Reflectivity , label=int((

max_layers +1-o)*thinnest_layer *1E9), color=colormap ((o/

max_layers)), linewidth =1.5)
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170 conthick [0]. append(Contrast[int(extractedlam [0]- lambdmin *1e9)]*1*1)

171 conthick [1]. append(Contrast[int(extractedlam [1]- lambdmin *1e9)]*1*1)

172 conthick [2]. append(Contrast[int(extractedlam [2]- lambdmin *1e9)]*1*1)

173 R, G, B = [],[],[]

174 r, g, b = 0,0,0

175 for i in range(len(wavelengths)):

176 R, G, B = wavelength_to_rgb(wavelengths[i]*1e9 , Reflectivity[i

])

177 r,g,b=calculate_weighted_av_RGB(R, G, B, r, g, b, Reflectivity[

i], Contrast[i])

178

179 tot_contr= sum(Reflectivity [:])

180 r=r / (tot_contr) *1*1.3 #CALIBRATION

181 g=g / (tot_contr) *1*1.3

182 b=b / (tot_contr) *2*1.3

183 Reds.append(r)

184 Greens.append(g)

185 Blues.append(b)

186

187 ax.plot(wavelengths *1E9 ,[0 for _ in range(len(wavelengths))], [0 for _

in range(len(wavelengths))], color=’yellow ’, linewidth =1.5)

188 ax.set_xlim(lambdmin *1e9 ,lambdmax *1e9)

189 ax.set_xlabel(’Wavelength (nm)’)

190 ax.set_ylim(None , o*thinnest_layer *1e9)

191 ax.set_ylabel(’Thickness (nm)’)

192 ax.set_zlim(None ,1)

193 ax.set_zlabel(’Contrast ’)

194 ax.set_title(’Predicted Contrast FePS$_3$ ’)
195 cbar = fig.colorbar(plt.cm.ScalarMappable(cmap=cm.viridis_r), ax=ax ,

shrink =0.5)

196 cbar.set_label(’Thickness (nm)’)

197 cbar.set_ticks(np.linspace(0, max_layers*thinnest_layer *1e6*5, 11))

198 cbar.set_ticklabels ([f’{int(tick*thinnest_layer *1e9/2)}’ for tick in np

.linspace(0, max_layers*thinnest_layer *1e9, 11)]) # Set labels to Y

values

199 ax.grid(True)

200 axu.set_xlim(lambdmin *1e9 ,lambdmax *1e9)

201 axu.set_xlabel(’Wavelength (nm)’)

202 axu.set_ylim(None , o*thinnest_layer *1e9)

203 axu.set_ylabel(’Thickness (nm)’)

204 axu.set_zlim(0, None)

205 axu.set_zlabel(’Intensity ’)

206 cbaru = fig.colorbar(plt.cm.ScalarMappable(cmap=cm.viridis_r), ax=axu ,

shrink =0.5)

207 cbaru.set_label(’Thickness (nm)’)

208 cbaru.set_ticks(np.linspace(0, max_layers*thinnest_layer *1e6*5, 11))

209 cbaru.set_ticklabels ([f’{int(tick*thinnest_layer *1e9/2)}’ for tick in

np.linspace(0, max_layers*thinnest_layer *1e9 , 11)]) # Set labels to

Y values

210

211 plt.figure (6)

212 plt.plot ([1e9*thinnest_layer *( max_layers -_) for _ in range(max_layers)

], conthick [0], color= ’blue’)

213 plt.plot ([1e9*thinnest_layer *( max_layers -_) for _ in range(max_layers)

], conthick [1], color= ’green ’)

214 plt.plot ([1e9*thinnest_layer *( max_layers -_) for _ in range(max_layers)

], conthick [2], color = ’red’)

215 plt.plot ([1e9*thinnest_layer *( max_layers -_) for _ in range(max_layers)
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], [damped_sinusoid (1e9*thinnest_layer *(max_layers -_), *popt_b) for

_ in range(max_layers)], color=’blue’, linestyle=’dashed ’,linewidth

=1)

216 plt.plot ([1e9*thinnest_layer *( max_layers -_) for _ in range(max_layers)

], [damped_sinusoid (1e9*thinnest_layer *(max_layers -_), *popt_g)*1

for _ in range(max_layers)], color=’green’, linestyle=’dashed ’,

linewidth =1)

217 plt.plot ([1e9*thinnest_layer *( max_layers -_) for _ in range(max_layers)

], [damped_sinusoid (1e9*thinnest_layer *(max_layers -_), *popt_r)*1

for _ in range(max_layers)], color=’red’, linestyle=’dashed ’,

linewidth =1)

218 plt.xlabel(’Thickness (nm)’)

219 plt.ylabel(’Contrast $C$’)
220 plt.legend(legendnormal(extractedlam))

221 plt.title(’Predicted and Measured Contrast $C$ per Thickness ’)

222

223 plt.figure (1)

224 plt.legend(legend(thinnest_layer *1E9), loc=’lower right’,fontsize=’

small ’)

225 plt.title(’Predicted Contrast FePS$_3$ ’)
226 plt.ylabel(’Contrast ’)

227 plt.xlabel(’Wavelength (nm)’)

228

229 plt.figure (2)

230 plt.figure(figsize =(12, 6))

231 num_values = max_layers

232 colors = [(Reds[num_values -_-1]/255 , Greens[num_values -_-1]/255 , Blues[

num_values -_ -1]/255) for _ in range(num_values)]

233 rgb_colors = np.array(colors)

234 fig , ax = plt.subplots(figsize =(8, 3))

235 ax.imshow(rgb_colors[np.newaxis , :, :], aspect=’auto’, extent =[0, len(

rgb_colors), 0, 1])

236 plt.xlabel("Thickness (nm)")

237 num_values = max_layers

238 x_labels = [f"{int(i*thinnest_layer *1e9)}" for i in range(0, num_values

+ 1)]

239 x_indices_to_label = range(0, num_values +1, 10)

240 plt.xticks(x_indices_to_label , [x_labels[i] for i in x_indices_to_label

], rotation =90)

241 plt.yticks ([])

242 plt.title("Predicted Colours FePS3")

243

244 #here we define the RGB Colors of the ’measured ’ graph

245 colors = [( Red_measured_FePs3(thinnest_layer*_*1e9)/255,

Green_measured_FePs3(thinnest_layer *1e9*_)/255, Blue_measured_FePs3(

thinnest_layer *1e9*_)/255) for _ in range(num_values)]

246 rgb_colors = np.array(colors)

247 fig , ax = plt.subplots(figsize =(6, 3.6))

248 ax.imshow(rgb_colors[np.newaxis , :, :], aspect=’auto’, extent =[0, len(

rgb_colors), 0, 1])

249 plt.xlabel("Thickness (nm)")

250 num_values = max_layers

251 x_labels = [f"{int(i*thinnest_layer *1e9)}" for i in range(0, num_values

+ 1)]

252 x_indices_to_label = range(0, num_values +1, 10)

253 plt.xticks(x_indices_to_label , [x_labels[i] for i in x_indices_to_label

], rotation =90)

254 plt.yticks ([])
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255 plt.title("Measured RGB values FePS3")

256 plt.tight_layout ()

257 plt.show()

258

259 Reds.reverse ()

260 Greens.reverse ()

261 Blues.reverse ()

262 colorsmes = [( Red_measured_FePs3(thinnest_layer*_*1e9)/255,

Green_measured_FePs3(thinnest_layer *1e9*_)/255, Blue_measured_FePs3(

thinnest_layer *1e9*_)/255) for _ in range(num_values)]

263 colortheory = [(Reds[_]/255, Greens[_]/255, Blues[_]/255) for _ in

range(num_values)]

264 colors = colorsmes #colortheory

265 plt.figure(figsize =(10 ,8))

266 col= [’red colours ’, ’green colours ’, ’blue colours ’ ,’all colours ’]

267 for k in range (4):

268 data =[]

269 for i in range(len(colors)):

270 heat = []

271 for j in range(len(colors)):

272 if k <= 2:

273 diff = abs(colors[i][k]*255- colors[j][k]*255)

274 elif k==3:

275 diffr = abs(colors[i][0]*255 - colors[j][0]*255)

276 diffg = abs(colors[i][1]*255 - colors[j][1]*255)

277 diffb = abs(colors[i][2]*255 - colors[j][2]*255)

278 diff = (diffr+diffg+diffb)/3

279 if diff >10: val = 0

280 elif diff >9: val = 0.1

281 elif diff >8: val = 0.2

282 elif diff >7: val = 0.3

283 elif diff >6: val = 0.4

284 elif diff >5: val = 0.5

285 elif diff >4: val = 0.6

286 elif diff >3: val = 0.7

287 elif diff >2: val = 0.8

288 elif diff >1: val = 0.9

289 elif diff >0.5: val = 0.95

290 elif diff == 0: val = 1

291 heat.append(val)

292 data.append(heat)

293 plt.subplot (2,2,k+1)

294 heatmap = plt.imshow(data , cmap=’plasma ’)

295 plt.gca().invert_yaxis ()

296 cbar = plt.colorbar(heatmap)

297 ticks = np.arange(0, max_layers +1, thinnest_layer *1e9*10) # Adjust

the range and step as needed

298 plt.xticks(ticks , rotation = 90)

299 plt.yticks(ticks)

300 plt.ylabel(’Measured Colour per Thickness (nm)’)

301 plt.xlabel(’Predicted Colour Thickness (nm)’)

302 plt.title(f’Overlap of {col[k]}’)

303 plt.tight_layout ()

304 plt.show()

Listing 2: Creating theoretical model computations, colour stripes and confuseable thicknesses
graph. Specific for FePS3, similar for NbSe2
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1 import pandas as pd

2 import cv2

3 import matplotlib.pyplot as plt

4

5 data = pd.read_excel(’XY values.xlsx’)

6 path = r’FePS3_104.png’

7

8 imag= cv2.imread(path , cv2.IMREAD_COLOR)

9 column1_data = data[’x value’]

10 column2_data = data[’y value’]

11

12 plt.imshow(cv2.cvtColor(imag , cv2.COLOR_BGR2RGB))

13 plt.scatter(column1_data , column2_data , label=’Data collection sites’,

color=’white ’, marker=’x’, linewidth =0.7)

14 plt.xlabel(’x-axis’)

15 plt.ylabel(’y-axis’)

16 plt.legend(loc = ’upper left’)

17 plt.show()

Listing 3: Graph for sites of recording

1 import pandas as pd

2 import matplotlib.pyplot as plt

3

4 excel_file = "FePS3 RGB absolut.xlsx" #specific for FePS3

5

6 df = pd.read_excel(excel_file)

7 datacolor=’Red’,’Green ’,’Blue’,’All’

8 stdcolor=’R’,’G’,’B’,’A’

9 xP = df[’HeightP ’]. values

10 xQ = df[’HeightQ ’]. values

11 cross_length_xP = df[’stdH’]. values

12 cross_length_xQ = df[’qstdH ’]. values

13

14 plt.figure(figsize =(10 ,8), dpi =300)

15 for i in range(len(datacolor)):

16 plt.subplot (2,2,i+1)

17 yPr = df[datacolor[i]]. values

18 yQr = df[’q’+datacolor[i]]. values

19 cross_length_yP = df[’std’+stdcolor[i]]. values

20 cross_length_yQ = df[’qstd’+stdcolor[i]]. values

21 plt.xlabel(’Height (nm)’)

22 plt.ylabel(’Intensity of Color1 ’)

23 plt.xlim(0, max(xP) + 10)

24 plt.ylim(0, max(max(yPr), max(yQr)) + 10)

25 plt.grid(True)

26

27 colorP=’black’

28 if i<3: colorQ=datacolor[i]. lower()

29 elif i==3: colorQ=’gray’

30 for x_val , y_val , len_x , len_y in zip(xP , yPr , cross_length_xP ,

cross_length_yP):

31 plt.plot([ x_val - len_x , x_val + len_x], [y_val , y_val], color=

colorP , linewidth =1)

32 plt.plot([x_val , x_val], [y_val - len_y , y_val + len_y], color=

colorP , linewidth =1)

33 for x_val , y_val , len_x , len_y in zip(xQ , yQr , cross_length_xQ ,

cross_length_yQ):
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34 plt.plot([ x_val - len_x , x_val + len_x], [y_val , y_val], color=

colorQ , linewidth =1)

35 plt.plot([x_val , x_val], [y_val - len_y , y_val + len_y], color=

colorQ , linewidth =1)

36 plt.title(’Leveled reflected Intensity ’+datacolor[i])

37 plt.tight_layout ()

38 plt.show()

Listing 4: Dataplots RGB values, specific for FePS3, similar for NbSe2

1 import pandas as pd

2 import numpy as np

3 import matplotlib.pyplot as plt

4 from scipy.optimize import curve_fit

5

6 material= ’NbSe2 ’

7 def damped_sinusoid(t, A, lambda_ , omega , phi , C):

8 return A * np.exp(-t/lambda_) * np.cos ((2*np.pi)/omega * t + phi) +

C

9 if material == ’FePS3’:

10 p00 =[10 ,10 ,100 ,0 ,0]

11 else:

12 p00=[10,5,10,0,0]

13 np.polynomial.set_default_printstyle(’ascii’)

14

15 excel_file = f"{material} Contrasts.xlsx"

16 df = pd.read_excel(excel_file)

17 datacolor = ’R’,’G’,’B’, ’A’

18 colors= ’red’,’green’,’blue’,’gray’

19 x = df[’Heighttt ’]. values

20

21 plt.figure(figsize =(10 ,8))

22 for i in range(len(datacolor)):

23 plt.subplot (2,2,i+1)

24 yr = df[’Con’+datacolor[i]]. values

25 cross_length_x = df[’cstdH’]. values

26 cross_length_y = df[’cstd’+datacolor[i]]. values

27 popt , pcov = curve_fit(damped_sinusoid , x, yr , p0=p00)

28 A_fit , lambda_fit , omega_fit , phi_fit , C_fit = popt

29 print("Fit function"+str(datacolor[i])+":")

30 print(f’Gefittete Parameter: A = {A_fit}, lambda = {lambda_fit},

omega = {omega_fit}, phi = {phi_fit}, C = {C_fit}’)

31 print(f’{A_fit}e^-t/{ lambda_fit} cos(2\pi/{ omega_fit}t +{ phi_fit })

+{ C_fit}’)

32 #Calculate R-squared (R^2)

33 y_pred = damped_sinusoid(x, *popt)

34 ss_total = ((yr - np.mean(yr)) ** 2).sum()

35 ss_res = ((yr - y_pred) ** 2).sum()

36 r_squared = 1 - (ss_res / ss_total)

37 r_squared = int(r_squared *10000) /10000

38 print(f’R^2 is: {r_squared}’)

39

40 x_fit = np.linspace(min(x), max(x), 500)

41 y_fit =damped_sinusoid(x_fit , *popt)

42 plt.title(’Contrast for ’+ colors[i] + ’ channel ’)

43 plt.plot(x_fit , y_fit , label=’Sinusoidal Fit’, color=’red’)

44 plt.xlabel(’Height (nm)’)

45 plt.ylabel(’Contrast ’)
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46 plt.xlim(0, min(max(x)+10 ,217))

47 plt.ylim(min(yr) -0.5,max(yr)+0.5)

48 plt.grid(True)

49 plt.plot([0,max(x) + 10],[0,0], color=’black’,linestyle=’-’)

50

51 if material == ’FePS3’:

52 for x_val , y_val , len_x , len_y in zip(x[77:] , yr[77:] ,

cross_length_x [77:], cross_length_y [77:]):

53 plt.plot([ x_val - len_x , x_val + len_x], [y_val , y_val],

color=’black ’, linewidth =1)

54 plt.plot([x_val , x_val], [y_val - len_y , y_val + len_y],

color=’black ’, linewidth =1)

55 for x_val , y_val , len_x , len_y in zip(x[0:77] , yr[0:77] ,

cross_length_x [0:77] , cross_length_y [0:77]):

56 plt.plot([ x_val - len_x , x_val + len_x], [y_val , y_val],

color=colors[i], linewidth =1)

57 plt.plot([x_val , x_val], [y_val - len_y , y_val + len_y],

color=colors[i], linewidth =1)

58 else:

59 for x_val , y_val , len_x , len_y in zip(x, yr , cross_length_x ,

cross_length_y):

60 plt.plot([ x_val - len_x , x_val + len_x], [y_val , y_val],

color=colors[i], linewidth =1)

61 plt.plot([x_val , x_val], [y_val - len_y , y_val + len_y],

color=colors[i], linewidth =1)

62

63 plt.annotate(f’$r^2$={ r_squared}’, (0.05, 0.93), xycoords=’axes

fraction ’, fontsize =12, color=’green ’)

64 plt.tight_layout ()

65

66 for i in range(len(datacolor)):

67 plt.figure (5)

68 yr = df[’Con’+datacolor[i]]. values

69 yg = df[’ConG’]. values

70 yb = df[’ConR’]. values

71 popt , pcov = curve_fit(damped_sinusoid , x, yr , p0=p00)

72 A_fit , lambda_fit , omega_fit , phi_fit , C_fit = popt

73 x_fit = np.linspace(5, max(x), 500)

74 y_fit = damped_sinusoid(x_fit , *popt)

75 plt.plot(x_fit , y_fit , label=’Polynomial Fit’, color=colors[i])

76 plt.xlim(0,min(max(x)+10 ,220))

77 plt.ylim (-2,1.5)

78 plt.show()

Listing 5: Dataplots Contrast values, for both materials, change line 6

1 import matplotlib.pyplot as plt

2 import numpy as np

3 from scipy.optimize import curve_fit

4 import pandas as pd

5

6 R =38.18 #Input value Red

7 G= 134.42 #Input value Green

8 B=256 #Input value Blue

9 SubR =91 #Red channel Substrate

10 SubG =99 #Green channel Substrate

11 SubB =231 #Blue channel Substrate

12 mode = ’average ’ #or ’maximum ’
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13 cutoff =6 #how many units of light intensity above minimal difference

will be accepted

14

15 excel_file = "FePS3 Contrasts.xlsx"

16 thinnest_layer =1E-9

17 max_layers= 200

18 df = pd.read_excel(excel_file)

19 x = df[’Heighttt ’]. values

20 yr = df[’ConR’]. values

21 yg =df[’ConG’]. values

22 yb =df[’ConB’]. values

23

24 def damped_sinusoid(t, A, lambda_ , omega , phi , C):

25 return A * np.exp(-lambda_ * t) * np.cos(omega * t + phi) + C

26 #this script does the fitting aswell , can be replaced by reference

function.

27 popt_r , pcov = curve_fit(damped_sinusoid , x, yr , p0=[10, 1E-3, 1E-2, 0,

0])

28 popt_g , pcov = curve_fit(damped_sinusoid , x, yg , p0=[10, 1E-3, 1E-2, 0,

0])

29 popt_b , pcov = curve_fit(damped_sinusoid , x, yb , p0=[10, 1E-3, 1E-2, 0,

0])

30

31 def Red_measured_FePs3 (x):

32 r_conmes= damped_sinusoid(x, *popt_r)

33 if r_conmes >1: r_conmes =1

34 return (1-r_conmes)*SubR

35 def Green_measured_FePs3 (x):

36 r_conmes= damped_sinusoid(x, *popt_g)

37 if r_conmes >1: r_conmes =1

38 return (1-r_conmes)*SubG

39 def Blue_measured_FePs3 (x):

40 r_conmes= damped_sinusoid(x, *popt_b)

41 if r_conmes >1: r_conmes =1

42 if x<25: return 255

43 else:

44 return (1-r_conmes)*SubB

45

46 colorr =[]

47 colorg =[]

48 colorb =[]

49 colorav =[]

50 for i in range(max_layers):

51 colorr.append(abs(Red_measured_FePs3(thinnest_layer*i*1e9)-R))

52 colorg.append(abs(Green_measured_FePs3(thinnest_layer*i*1e9)-G))

53 colorb.append(abs(Blue_measured_FePs3(thinnest_layer*i*1e9)-B))

54 if mode ==’average ’:

55 colorav.append (( colorr[i]+ colorg[i]+ colorb[i])/3)

56 elif mode == ’maximum ’:

57 colorav.append(max(colorr[i], colorg[i], colorb[i]))

58

59 minval = min(colorav)

60

61 indices = [i for i, x in enumerate(colorav) if minval + cutoff >= x >=

minval]

62 print(f"The indices of {minval} are: {indices}")

63

64 if R >255: R=255
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65 if G >255: G=255

66 if B >255: B=255

67 rgb_colors= np.array ([[int(R),int(G),int(B)]])

68 fig , ax = plt.subplots(figsize =(6, 3.6))

69 ax.imshow(rgb_colors[np.newaxis , :, :], aspect=’auto’, extent =[0, len(

rgb_colors), 0, 1])

70 ax.set_xticks ([])

71 ax.set_yticks ([])

72

73 plt.figure(dpi =150)

74 x=np.linspace(0, max_layers*thinnest_layer *1e9, max_layers)

75

76 plt.plot(x,colorr , color = ’red’, linewidth = 0.3)

77 plt.plot(x,colorg , color = ’green’, linewidth = 0.3)

78 plt.plot(x,colorb , color = ’blue’, linewidth = 0.3)

79 plt.plot(x,colorav , color = ’black’)

80 plt.plot(x, [minval+cutoff for _ in range(max_layers)], color= ’black’,

linewidth = 1)

81 plt.xlabel(’Thickness (nm)’)

82 plt.ylabel(’Difference ’)

83 plt.title(’Difference to RGB Values ’)

84 plt.show()

Listing 6: Application for single RGB value

1 import matplotlib.pyplot as plt

2 import numpy as np

3 from scipy.optimize import curve_fit

4 import pandas as pd

5

6

7 thinnest_layer =1E-9

8 max_layers= 200

9 SubR =91 #Red channel Substrate

10 SubG =99 #Green channel Substrate

11 SubB =232 #Blue channel Substrate

12 cutoff =25 #units of light intensity above minimal difference accepted

13 excel_file = "FePS3 Contrasts.xlsx" #fitting is done here , can be

replaced by functions

14 rgb_file = "FePS3 RGB absolut application leveled.xlsx" #for raw values

, "FePS3 RGB absolut_raw.xlsx"

15

16 df = pd.read_excel(excel_file)

17 dRGB = pd.read_excel(rgb_file)

18 x = df[’Heighttt ’]. values

19 yr = df[’ConR’]. values

20 yg =df[’ConG’]. values

21 yb =df[’ConB’]. values

22 tot_sampleH = dRGB[’HeightQ ’]. values

23 tot_sampleR = dRGB[’qRed’]. values

24 tot_sampleG = dRGB [’qGreen ’]. values

25 tot_sampleB = dRGB [’qBlue ’]. values

26

27 def damped_sinusoid(t, A, lambda_ , omega , phi , C):

28 return A * np.exp(-lambda_ * t) * np.cos(omega * t + phi) + C

29 popt_r , pcov = curve_fit(damped_sinusoid , x, yr , p0=[10, 1E-3, 1E-2, 0,

0])

30 popt_g , pcov = curve_fit(damped_sinusoid , x, yg , p0=[10, 1E-3, 1E-2, 0,
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0])

31 popt_b , pcov = curve_fit(damped_sinusoid , x, yb , p0=[10, 1E-3, 1E-2, 0,

0])

32 def Red_measured_FePs3 (x):

33 r_conmes= damped_sinusoid(x, *popt_r)

34 if r_conmes >1: r_conmes =1

35 return (1-r_conmes)*SubR

36 def Green_measured_FePs3 (x):

37 r_conmes= damped_sinusoid(x, *popt_g)

38 if r_conmes >1: r_conmes =1

39 return (1-r_conmes)*SubG

40 def Blue_measured_FePs3 (x):

41 r_conmes= damped_sinusoid(x, *popt_b)

42 if r_conmes >1: r_conmes =1

43 if x<25: return 255

44 else:

45 return (1-r_conmes)*SubB

46

47 u_tot , umax_tot , e_tot , emax_tot , f_tot , fmax_tot = [],[],[],[],[],[]

48 ff_tot , ffmax_tot =[] ,[]

49 g_tot ,gmax_tot =[] ,[]

50 guesses_tot ,guessesmax_tot =[] ,[]

51 for cutof in range(cutoff +1):

52 u, umax=0,0 #correctly guessed thicknesses

53 e,emax=0,0 #number of correctly identified thicknesses

54 f,fmax=0,0 #number of exactly identified thicknesses

55 g,gmax=0,0

56 ff ,ffmax =0,0

57 data =[]

58 datamax =[]

59 for y in range(len(tot_sampleH)):

60 indices = []

61 colorr =[]

62 colorg =[]

63 colorb =[]

64 colorav =[]

65 colormax =[]

66 ffcheck =0

67 ffcheckmax =0

68 for i in range(max_layers):

69 colorr.append(abs(Red_measured_FePs3(thinnest_layer*i*1e9)-

tot_sampleR[y]))

70 colorg.append(abs(Green_measured_FePs3(thinnest_layer*i*1e9

)-tot_sampleG[y]))

71 colorb.append(abs(Blue_measured_FePs3(thinnest_layer*i*1e9)

-tot_sampleB[y]))

72 colorav.append (( colorr[i]+ colorg[i]+ colorb[i])/3)

73 colormax.append(max(colorr[i], colorg[i], colorb[i]))

74 minval = min(colorav)

75 minmaxval = min(colormax)

76 indices = [i for i, x in enumerate(colorav) if minval + cutof >=

x >= minval]

77 indicesmax = [i for i, x in enumerate(colormax) if minmaxval +

cutof >= x >= minmaxval]

78

79 for i in indices:

80 data.append(i)

81 for i in indicesmax:
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82 datamax.append(i)

83 if int(tot_sampleH[y]) -2 in indices or int(tot_sampleH[y])+2 in

indices:

84 g=g+1

85 ffcheck =1

86 if int(tot_sampleH[y]) -2 in indicesmax or int(tot_sampleH[y])+2

in indicesmax:

87 gmax=gmax+1

88 ffcheckmax =1

89 ’’’ if int(tot_sampleH[y]) -3 in indices or int(tot_sampleH[y

])+3 in indices:

90 g=g+1

91 if int(tot_sampleH[y]) -3 in indicesmax or int(tot_sampleH[y])+3

in indicesmax:

92 gmax=gmax+1

93

94 if int(tot_sampleH[y]) -4 in indices or int(tot_sampleH[y])+4 in

indices:

95 g=g+1

96 if int(tot_sampleH[y]) -4 in indicesmax or int(tot_sampleH[y])+4

in indicesmax:

97 gmax=gmax+1

98

99 if int(tot_sampleH[y]) -5 in indices or int(tot_sampleH[y])+5 in

indices:

100 g=g+1

101 if int(tot_sampleH[y]) -5 in indicesmaxor int(tot_sampleH[y])+5

in indicesmax:

102 gmax=gmax+1

103

104 if int(tot_sampleH[y]) -6 in indices or int(tot_sampleH[y])+6 in

indices:

105 g=g+1

106 if int(tot_sampleH[y]) -6 in indicesmax or int(tot_sampleH[y])+6

in indicesmax:

107 gmax=gmax+1 ’’’

108 if int(tot_sampleH[y]) in indices:

109 f=f+1

110 ffcheck =1

111 if int(tot_sampleH[y]) -1 in indices:

112 if int(tot_sampleH[y])+1 in indices :

113 u= u+3

114 e = e+1

115 else:

116 u= u+2

117 e = e+1

118

119 elif int(tot_sampleH[y])+1 in indices:

120 u=u+2

121 e = e+1

122 else:

123 u=u+1

124 e = e+1

125 elif int(tot_sampleH[y]) -1 in indices or int(tot_sampleH[y])+1

in indices:

126 ffcheck =1

127 u=u+1

128 e = e+1
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129 if int(tot_sampleH[y]) in indicesmax:

130 fmax=fmax+1

131 ffcheckmax =1

132 if int(tot_sampleH[y]) -1 in indicesmax:

133 if int(tot_sampleH[y])+1 in indicesmax :

134 umax= umax+3

135 emax = emax+1

136 else:

137 umax= umax+2

138 emax = emax+1

139 elif int(tot_sampleH[y])+1 in indicesmax:

140 umax=umax+2

141 emax = emax+1

142 else:

143 umax=umax+1

144 emax = emax+1

145 elif int(tot_sampleH[y]) -1 in indicesmax or int(tot_sampleH[y])

+1 in indicesmax:

146 umax=umax+1

147 emax = emax+1

148 ffcheckmax =1

149

150 if ffcheck ==1: ff=ff+1

151 if ffcheckmax ==1: ffmax=ffmax+1

152 g=g+u

153 gmax=gmax+umax

154 #if int(tot_sampleH[y]) in indicesmax or int(tot_sampleH[y]) -1

in indicesmax or int(tot_sampleH[y])+1 in indicesmax:

155 # umax = umax+1

156 ’’’ #creates plots for every cutoff

157 plt.figure(dpi =100)

158 plt.hist(data , bins=range(min(data), max(data) + 1), align=’left ’,

edgecolor=’black ’, label = ’Predicted Thickness ’)

159 plt.hist(tot_sampleH , bins=range(int(min(tot_sampleH)), int(max(

tot_sampleH)) + 1), align=’left ’, edgecolor=’red ’, label = ’

Measured Thickness ’)

160 plt.legend ()

161 plt.xlabel(’Thickness (nm)’)

162 plt.ylabel(’Frequency ’)

163 plt.title(f’Using Average Colour Difference and Cutoff {cutof}’)

164 plt.show()

165 plt.figure(dpi =100)

166 plt.hist(datamax , bins=range(min(datamax), max(datamax) + 1), align

=’left ’, edgecolor=’black ’, label = ’Predicted Thickness ’)

167 plt.hist(tot_sampleH , bins=range(int(min(tot_sampleH)), int(max(

tot_sampleH)) + 1), align=’left ’, edgecolor=’red ’, label = ’

Measured Thickness ’)

168 plt.legend ()

169 plt.xlabel(’Thickness (nm)’)

170 plt.ylabel(’Frequency ’)

171 plt.title(f’Using Maximal Colour Difference and Cutoff {cutof}’)

172 plt.show() ’’’

173 percentage_av= u/len(data)

174 percentage_max= umax/len(datamax)

175 print(f’Cutoff = {cutof}’)

176 print(f’The height of {e} out of {len(tot_sampleH)} samples were

detected correctly (+-1nm), {f} flakes exactly , with average

difference. That is {int(percentage_av *1000) /10}% and {int(f/len
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(data)*1000) /10}% of the indicated thicknesses.’)

177 print(f’{len(data)} guesses for {len(tot_sampleH)} samples ’)

178 print(f’The height of {emax} out of {len(tot_sampleH)} samples were

detected exactly (+-1nm), {fmax} flakes exactly , with maximal

difference. That is {int(percentage_max *1000) /10}% and {int(fmax

/len(datamax)*1000) /10}% of the indicated thicknesses.’)

179 print(f’{len(datamax)} guesses for {len(tot_sampleH)} samples ’)

180

181 u_tot.append(u) #correctly guessed thicknesses

182 umax_tot.append(umax)

183 e_tot.append(e) #number of correctly identified thicknesses

184 emax_tot.append(emax)

185 f_tot.append(f) #number of exactly identified thicknesses

186 fmax_tot.append(fmax)

187 g_tot.append(g)

188 gmax_tot.append(gmax)

189 ff_tot.append(ff)

190 ffmax_tot.append(ffmax)

191 guesses_tot.append(len(data))

192 guessesmax_tot.append(len(datamax))

193

194 plt.figure (1)

195 plt.plot([i for i in range(cutoff +1)],e_tot , label=’number of correctly

identified thicknesses ’)

196 plt.plot([i for i in range(cutoff +1)],f_tot , label=’number of exactly

identified thicknesses guessed thicknesses ’)

197 plt.figure (2)

198 plt.plot([i for i in range(cutoff +1)],guesses_tot , label=’number of

correctly identified thicknesses ’)

199 plt.plot([i for i in range(cutoff +1)],guessesmax_tot , label=’number of

exactly identified thicknesses guessed thicknesses ’)

200 plt.figure(figsize =(6,6), dpi =600)

201 plt.title(’Correct thicknesses per cutoff ’) #Comparison between average

(av) and maximal (max) difference

202 plt.plot([i for i in range(cutoff +1)],[g_tot[i]/ guesses_tot[i]*100 for

i in range(len(u_tot))], label=’av, $\pm2.5$ nm’, color =[0 ,0 ,0.45])

203 plt.plot([i for i in range(cutoff +1)],[u_tot[i]/ guesses_tot[i]*100 for

i in range(len(u_tot))], label=’av, $\pm1.5$ nm’, color =[0 ,0 ,0.75])

204 plt.plot([i for i in range(cutoff +1)],[f_tot[i]/ guesses_tot[i]*100 for

i in range(len(f_tot))], label=’av, $\pm0.5$ nm’, color =[0 ,0,1])

205 plt.plot([i for i in range(cutoff +1)],[gmax_tot[i]/ guessesmax_tot[i

]*100 for i in range(len(umax_tot))], label=’max , $\pm2.5$ nm’,

color =[0.45 ,0 ,0])

206 plt.plot([i for i in range(cutoff +1)],[umax_tot[i]/ guessesmax_tot[i

]*100 for i in range(len(umax_tot))], label=’max , $\pm1.5$ nm’,

color =[0.75 ,0 ,0])

207 plt.plot([i for i in range(cutoff +1)],[fmax_tot[i]/ guessesmax_tot[i

]*100 for i in range(len(fmax_tot))], label=’max , $\pm0.5$ nm’,

color =[1,0 ,0])

208 plt.plot([i for i in range(cutoff +1)],[ff_tot[i]/124*100 for i in range

(len(f_tot))], label=’id. samples (av, $\pm2.5$ nm)’, color =

[0 ,0.4 ,0.1])

209 plt.plot([i for i in range(cutoff +1)],[f_tot[i]/124*100 for i in range(

len(f_tot))], label=’id. samples (av , $\pm0.5$ nm)’, color =

[0 ,0.8 ,0.1])

210 plt.plot([i for i in range(cutoff +1)],[ ffmax_tot[i]/124*100 for i in

range(len(f_tot))], label=’id. samples (max , $\pm2.5$ nm)’, color =

[0.55 ,0.4 ,0])
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211 plt.plot([i for i in range(cutoff +1)],[fmax_tot[i]/124*100 for i in

range(len(f_tot))], label=’id. samples (max , $\pm0.5$ nm)’, color =

[0.8 ,0.4 ,0])

212 plt.legend ()

213 plt.ylim (0 ,100)

214 plt.xlabel(’Cutoff ’)

215 plt.ylabel(’Ratio in %’)

Listing 7: Evaluation of application for lists of RGB values, part 1

1 import matplotlib.pyplot as plt

2 import numpy as np

3 from scipy.optimize import curve_fit

4 import pandas as pd

5

6 thinnest_layer =1E-9

7 max_layers= 200

8 SubR =91 #Red channel Substrate

9 SubG =99 #Green channel Substrate

10 SubB =232 #Blue channel Substrate

11 cutoff =25 #units of light intensity above minimal difference accepted

12 excel_file = "FePS3 Contrasts.xlsx"

13 rgb_file = "FePS3 RGB absolut application leveled.xlsx"

14 colormap= plt.cm.viridis_r

15 norm=plt.Normalize(0,cutoff)

16

17 df = pd.read_excel(excel_file)

18 dRGB = pd.read_excel(rgb_file)

19 x = df[’Heighttt ’]. values

20 yr = df[’ConR’]. values

21 yg =df[’ConG’]. values

22 yb =df[’ConB’]. values

23 tot_sampleH = dRGB[’HeightQ ’]. values

24 tot_sampleR = dRGB[’qRed’]. values

25 tot_sampleG = dRGB [’qGreen ’]. values

26 tot_sampleB = dRGB [’qBlue ’]. values

27 def damped_sinusoid(t, A, lambda_ , omega , phi , C):

28 return A * np.exp(-lambda_ * t) * np.cos(omega * t + phi) + C

29 popt_r , pcov = curve_fit(damped_sinusoid , x, yr , p0=[10, 1E-3, 1E-2, 0,

0])

30 popt_g , pcov = curve_fit(damped_sinusoid , x, yg , p0=[10, 1E-3, 1E-2, 0,

0])

31 popt_b , pcov = curve_fit(damped_sinusoid , x, yb , p0=[10, 1E-3, 1E-2, 0,

0])

32 def Red_measured_FePs3 (x):

33 r_conmes= damped_sinusoid(x, *popt_r)

34 if r_conmes >1: r_conmes =1

35 return (1-r_conmes)*SubR

36 def Green_measured_FePs3 (x):

37 r_conmes= damped_sinusoid(x, *popt_g)

38 if r_conmes >1: r_conmes =1

39 return (1-r_conmes)*SubG

40 def Blue_measured_FePs3 (x):

41 r_conmes= damped_sinusoid(x, *popt_b)

42 if r_conmes >1: r_conmes =1

43 if x<25: return 255

44 else:

45 return (1-r_conmes)*SubB
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46 plt.figure(dpi =600)

47 for cutof in range(cutoff +1):

48 cutof=cutoff -cutof

49 u, umax=0,0 #correctly guessed thicknesses

50 e,emax=0,0 #number of correctly identified thicknesses

51 f,fmax=0,0 #number of exactly identified thicknesses

52 data =[]

53 datamax =[]

54 for y in range(len(tot_sampleH)):

55 indices = []

56 colorr =[]

57 colorg =[]

58 colorb =[]

59 colorav =[]

60 colormax =[]

61 for i in range(max_layers):

62 colorr.append(abs(Red_measured_FePs3(thinnest_layer*i*1e9)-

tot_sampleR[y]))

63 colorg.append(abs(Green_measured_FePs3(thinnest_layer*i*1e9

)-tot_sampleG[y]))

64 colorb.append(abs(Blue_measured_FePs3(thinnest_layer*i*1e9)

-tot_sampleB[y]))

65 colorav.append (( colorr[i]+ colorg[i]+ colorb[i])/3)

66 colormax.append(max(colorr[i], colorg[i], colorb[i]))

67 minval = min(colorav)

68 minmaxval = min(colormax)

69 indices = [i for i, x in enumerate(colorav) if minval + cutof >=

x >= minval]

70 indicesmax = [i for i, x in enumerate(colormax) if minmaxval +

cutof >= x >= minmaxval]

71 print(f"The indices of {minmaxval} are: {indices }. The actual

Height is {tot_sampleH[y]}")

72 for i in indices:

73 data.append(i)

74 for i in indicesmax:

75 datamax.append(i)

76 if int(tot_sampleH[y]) in indices:

77 f=f+1

78 if int(tot_sampleH[y]) -1 in indices:

79 if int(tot_sampleH[y])+1 in indices :

80 u= u+3

81 e = e+1

82 else:

83 u= u+2

84 e = e+1

85 elif int(tot_sampleH[y])+1 in indices:

86 u=u+2

87 e = e+1

88 else:

89 u=u+1

90 e = e+1

91 elif int(tot_sampleH[y]) -1 in indices or int(tot_sampleH[y])+1

in indices:

92 u=u+1

93 e = e+1

94 if int(tot_sampleH[y]) in indicesmax:

95 fmax=fmax+1

96 if int(tot_sampleH[y]) -1 in indicesmax:
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97 if int(tot_sampleH[y])+1 in indicesmax :

98 umax= umax+3

99 emax = emax+1

100 else:

101 umax= umax+2

102 emax = emax+1

103 elif int(tot_sampleH[y])+1 in indicesmax:

104 umax=umax+2

105 emax = emax+1

106 else:

107 umax=umax+1

108 emax = emax+1

109 elif int(tot_sampleH[y]) -1 in indicesmax or int(tot_sampleH[y])

+1 in indicesmax:

110 umax=umax+1

111 emax = emax+1

112 plt.hist(datamax , bins=range(min(datamax), max(datamax) + 1), align

=’left’, label = ’Predicted Thickness ’, color=plt.cm.viridis_r(

cutof/cutoff))

113 percentage_av= u/len(data)

114 percentage_max= umax/len(datamax)

115 print(f’Cutoff = {cutof}’)

116 print(f’The height of {e} out of {len(tot_sampleH)} samples were

detected correctly (+-1nm), {f} flakes exactly , with average

difference. That is {int(percentage_av *1000) /10}% and {int(f/len

(data)*1000) /10}% of the indicated thicknesses.’)

117 print(f’{len(data)} guesses for {len(tot_sampleH)} samples ’)

118 print(f’The height of {emax} out of {len(tot_sampleH)} samples were

detected exactly (+-1nm), {fmax} flakes exactly , with maximal

difference. That is {int(percentage_max *1000) /10}% and {int(fmax

/len(datamax)*1000) /10}% of the indicated thicknesses.’)

119 print(f’{len(datamax)} guesses for {len(tot_sampleH)} samples ’)

120

121 plt.hist(tot_sampleH , bins=range(int(min(tot_sampleH)), int(max(

tot_sampleH)) + 1), align=’left’, color=’red’, label = ’Measured

Thickness ’)

122 plt.ylim(0, None)

123 plt.xlabel(’Thickness (nm)’)

124 plt.ylabel(’Frequency ’)

125 plt.title(’Calculated thicknesses using maximal colour difference ’)

126 sm = plt.cm.ScalarMappable(cmap=colormap , norm=norm)

127 sm.set_array ([])

128 plt.colorbar(sm , label=’Cutoff ’)

129 plt.show()

Listing 8: Evaluation of the application for lists of RGB values, part 2 (frequency diagrams).
Specific for maximum difference, average difference very similar
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