

Autonomous robot for fall detecƟon and
emergency alerts

Restoring my grandmother’s independence

Author: Victoria Hoffmann
Supervisor: Adriana Mikolášková

Maturitätsarbeit
MNG Rämibühl

08.01.2024

Abstract
Elderly people suffer more frequent and more severe falls as they age. To ensure swiŌ treatment for
their injuries, I invented a robot that can navigate autonomously with sensors collecƟng spaƟal data.
Based on a neural network, I trained a computer vision model that enables the robot to detect falls.
The robot’s alert system allows it to send emails with aƩached pictures of the person lying on the
floor. The main hardware components comprise a Raspberry Pi 4B+ (microprocessor), an Arduino Uno
(microcontroller), a camera, four motors, two ultrasound sensors, and a keypad. The robot uses the
“Bookworm” operaƟng system and is mainly programmed in Python.

The main results are that the robot correctly idenƟfies “lying people” with an accuracy of over 80%,
and that “walking” as well as “chair-siƫng” people are correctly classified as “not-lying.” However,
problems in idenƟficaƟon seem to arise when people are siƫng on the floor.

Beyond beƩer hardware components, possible improvements include methods to autonomously
follow the person instead of searching the enƟre apartment and addiƟonal fall detecƟon systems e.g.,
using an accelerometer. IncorporaƟng a language processing model and enabling live streaming of
relevant images could facilitate an iniƟal medical assessment of the situaƟon.

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

2

Contents
PREFACE ... 3

1 INTRODUCTION ... 4

2 LITERATURE .. 6

2.1 AUTONOMOUS NAVIGATION .. 6
2.2 IMAGE RECOGNITION .. 6

2.2.1 Neural Networks .. 6
2.2.2 Yolo: A ConvoluƟonal Neural Network... 8
2.2.3 Plaƞorm and Library for Computer Vision ImplementaƟon ... 10

3 ROBOT DESIGN AND DEVELOPMENT PROCESS ... 10

3.1 SIMPLIFIED MODE OF OPERATION ... 10
3.2 FUNCTIONALITIES ... 12

3.2.1 Autonomous Driving .. 12
3.2.2 Autonomous Object DetecƟon ... 16
3.2.3 External AlerƟng .. 17

3.3 DETAILED MODE OF OPERATION ... 19
3.4 SOFTWARE AND HARDWARE CONFIGURATION .. 21

3.4.1 SoŌware Architecture .. 21
3.4.2 Hardware Architecture .. 23

3.5 EMPIRICAL TESTING .. 25

4 RESULTS ... 29

4.1 ONE-PERSON CASE .. 29
4.2 PERSON-FREE CASE .. 34

5 DISCUSSION ... 37

6 CONCLUSION .. 39

7 BIBLIOGRAPHY ... 40

7.1 TRADITIONAL SOURCES.. 40
7.2 ONLINE SOURCES ... 41

8 APPENDIX .. 43

8.1 CODE .. 43
8.1.1 main.py .. 44
8.1.2 led_final.py .. 46
8.1.3 movement.py ... 47
8.1.4 ultrasound_final.py .. 49
8.1.5 keypad_final.py ... 50
8.1.6 image_recogniƟon_final.py ... 51
8.1.7 alert_email_final.py ... 53
8.1.8 p_key_final.py .. 54
8.1.9 var_final.py .. 54
8.1.10 ultrasound_2_direcƟon.ino .. 55

8.2 EXTENSIONS.. 57
8.2.1 Language processing model .. 57
8.2.2 Autonomous phone control ... 60

8.3 MATERIALS ... 60
8.3.1 SoŌware... 60
8.3.2 Hardware ... 61

DECLARATION OF INDEPENDENCE ... 64

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

3

Preface
Ever since I parƟcipated in a summer camp on computer science in Cambridge, UK, I have been
fascinated by autonomous robots. My passion for computer science further blossomed during my stay
at the Harvard Summer School, where I took an intensive course on algorithms and data structures in
Java. Taking every opportunity to build my knowledge in this field, my high school matura thesis
offered a first chance to pursue the endeavor of creaƟng a robot myself, as I experienced a dilemma
in my family: my grandmother’s wish to remain as independent as possible versus my parents’ and my
concern for her well-being. I wanted to develop a robot that would saƟsfy all the parƟes involved.
Specifically, I became interested in whether an autonomous robot was available—or could be built—
that would detect when a person had fallen and noƟfy a third party to call for external help.
Surprisingly, neither such a robot nor its underlying code seemed to be available “off the shelf,” and I
was intrigued by the possibility of creaƟng one myself. To achieve my objecƟve, I conducted research
on each individual hardware component and studied soŌware implementaƟons of the different
funcƟonaliƟes I wanted the robot to have—for example, image recogniƟon. I then programmed and
manually assembled the hardware and soŌware elements into an interdependent configuraƟon. With
every new component a new world opened up—not only for my robot, but also for me. In addiƟon to
teaching myself new skills in computer science and roboƟcs, I also learned how to approach soluƟons
from different angles by logically breaking down problems to their core. InvenƟng this robot combined
the fields of hardware architecture, soŌware development, and empirical analysis, each of which I
could enjoy in its own way.

Today, I look back on an immensely exciƟng project with many lessons learned over the course of the
year. I especially want to thank my supervisor Adriana Mikolášková for all her support during my
project. In parƟcular, she helped me to refine my project and to try out different approaches to certain
problems. Furthermore, I want to thank my computer science teacher Christoph Vogel, who supported
me not only in finding a way for the robot to cover the whole apartment in its search for a person in
need of assistance but also by introducing me to concepts such as UML charts. Finally, I thank the 18
people who Ɵrelessly assumed various posiƟons to help me train and test the computer vision model.

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

4

1 IntroducƟon
Switzerland is facing an aging populaƟon. In 2021, 19.0% of its populaƟon was already 65 or older
[101], and this percentage is expected to increase in the coming decades. This aggravates the issue of
how and where these seniors are supposed to live—i.e., either in reƟrement homes, where
accommodaƟon is scarce, or at home, where safety cannot always be guaranteed, parƟcularly for
those who live alone. For many seniors, it is vital to conƟnue living independently as they age. They
usually prefer to stay in the neighborhood they are familiar with. RelaƟves, however, are interested
in being alerted as swiŌly as possible in case of an emergency [1]. Thus, there is a need for more
support in everyday life—a problem aggravated by the lack of caregivers. Yet, with recent dramaƟc
improvements in technology, caregivers can be supported—and arguably even replaced—by smart
devices capable of observing medical condiƟons, detecƟng accidents, and alerƟng help.

For elderly people, falls can be parƟcularly troublesome because they can trigger a rapid deterioraƟon
in health. For example, if mobility is reduced due to a broken limb, muscle depleƟon accelerates.
Moreover, falls are problemaƟc if they go unnoƟced for a prolonged period due to the person’s smaller
circle of contacts who could noƟce said accidents. There are a range of devices that aim to detect falls
and alert contacts in the case of an emergency, but all suffer from certain disadvantages, as follows.

Wearable devices, such as alert buƩons, are dependent on the user remembering to wear them. They
are parƟcularly problemaƟc for individuals suffering from demenƟa, who tend to remove unfamiliar
objects [1]. Furthermore, such devices are of no use when the person is unconscious or simply unable
to reach the buƩon. Similarly, monitoring systems that track daily rouƟnes are unreliable, as they
might falsely alert relaƟves due to minor changes in those rouƟnes, which could be due to simple
forgeƞulness [12]. A disadvantage common to all these devices is that the alerts they provide offer no
informaƟon on the person’s actual well-being [12]. The use of video surveillance with closed-circuit
cameras provides the necessary informaƟon but remains controversial due to privacy concerns.
Moreover, the presence of cameras might create unnecessary stress [1,12]. Furthermore, the cameras
are usually fixed and therefore have blind spots [12]. To minimize those blind spots, a mobile robot
equipped with adequate sensors could be used—an approach taken by Takuma et al. [12]. In their
device, a computer, a camera, and infrared lasers were mounted on a small table affixed to a vacuum
cleaner. The device then measured the distance to the target person, calculated their direcƟon of
movement via triangulaƟon, and could thereby follow them. Once skeletal informaƟon was collected,
falls could then be registered by calculaƟng the difference between the y-coordinates of the head and
knees (see Figure 1). A very small distance was considered to be a fall. Takuma et al. encountered
several problems with their device, including stability and power consumpƟon, locaƟng a person who
had already fallen, failing to recognize a fall when the person’s head was outside the camera frame,
falsely alerƟng when a person was simply bending down, and managing the interacƟons between
different soŌware systems [12]. Nonetheless, the authors claim that their device achieved results that
were 80% beƩer than those obtained with staƟonary devices.

Figure 1: Fall determinaƟon using the difference between head and knees according to [12].

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

5

Another approach [1] introduces the integraƟon of a security system in a smart illuminaƟon apparatus
to issue alerts in the event of a fall, fire, or break-in. It is described as being capable of automaƟcally
locking a safe room in case of need. Although the concrete implementaƟon is not provided, the
detecƟon of emergency situaƟons is achieved with thermography, infrared, and color sensors. These
are used in addiƟon to monitoring medical blood pressure and heart rate sensors that are directly
applied to the skin [1]. While interesƟng, this approach raises issues such as individuals potenƟally
feeling restricted in their autonomy. Moreover, the tendency of paƟents with demenƟa to remove
unfamiliar devices remains.

Yet another device [11] employs machine learning to analyze the center of mass of a moving object.
The model is integrated into a home assistant and requires user interacƟon for feedback when a
certain confidence threshold has not been reached, which means that the model could not clearly
idenƟfy whether somebody had fallen. Thereby the model dynamically learns and can adapt to
different environments. However, specifics are not provided, as the patent applicaƟon provides only
a general overview with no indicaƟon of any concrete implementaƟon.

Recently, another camera-based approach has been developed, employing a machine learning model
to analyze inconsistent behavior [13]. Over Ɵme, the model gathers data, learning that frequent falls
may be typical for toddlers but are rare and dangerous for elderly people. It would also recognize that
while lying on the floor is completely normal in a gym-type environment, the same posture in the
kitchen could indicate a concerning event. In addiƟon to its implementaƟon of computer vision
algorithms, the device can also work with natural language processing to interpret audio commands.
Furthermore, privacy issues should not be a concern, as the visual processing to determine the posture
and posiƟon of the person in quesƟon is based on pixelated images or even skeletons. However, said
cameras are fixed and have blind spots, inevitably implying that they cannot capture or detect every
situaƟon within their surveillance domain. Such a limitaƟon could potenƟally result in missed alerts—
for instance, when an individual falls in an area not covered by the cameras.

In this thesis, the overarching goal was to enable elderly people to maintain their independence while
sƟll ensuring their safety. Therefore, I designed and programmed an autonomous vehicle that
navigates through the enƟrety of an apartment while keeping a lookout for people who are lying on
the ground. DetecƟng people in need has become more feasible thanks to neural networks, which
have greatly improved due to opƟmized algorithms and increased compuƟng power [6].

This thesis first covers a thorough introducƟon of the concepts uƟlized by my robot (chapter 2)
followed by a detailed account of its design and development process (chapter 3). I then describe the
outcomes of my work (chapter 4) and reflect on them in the ensuing discussion (chapter 5). Finally, I
draw conclusions from my project (chapter 6). Extensive addiƟonal informaƟon is provided in the
appendix.

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

6

2 Literature
As far as I am aware, no autonomous robot designed specifically for fall detecƟon exists that is
commercially available. Therefore, in the following chapter I describe the fundamental concepts
required for my robot: autonomous navigaƟon and image recogniƟon.

2.1 Autonomous NavigaƟon
Various kinds of sensors can be used to enable spaƟal navigaƟon. AcƟve sensors such as ultrasound
sensors determine spaƟal informaƟon by evaluaƟng the responses to signals they emit. Passive
sensors, such as cameras, receive external inputs from their surroundings without further interacƟng
with them. Combining several sensors oŌen yields maximal informaƟon, compensaƟng for the
shortcomings of individual sensors. For instance, GPS sensors do not perform well indoors, as radio
signals oŌen have difficulty penetraƟng solid walls. Infrared sensors, on the other hand, are highly
sensiƟve to external factors such as surface texture and lighƟng condiƟons [9]. Cameras provide
informaƟon on moƟon by tracking disƟnct features, but this approach is computaƟonally expensive
and ineffecƟve in poor lighƟng condiƟons. Lasers are another means of gathering spaƟal data, but
they are error-prone in large empty spaces or in proximity to glass structures [8].

There are two primary approaches to navigaƟon: map-based and mapless. Map-based examples
include “grid-based maps,” where each cell in a grid is marked as either an obstacle or as free space.
Meanwhile, “topological maps” represent characterisƟc features as nodes and define their
relaƟonships and proximity as edges [8]. Such maps allow free space to be extracted, enabling path
determinaƟon with shortest-path algorithms such as the Dijkstra’s algorithm [2]. The term “map-
using” refers to scenarios where a map is provided externally, enabling the robot to localize itself and
track the direcƟon of its own movements. With a known iniƟal posiƟon, the esƟmated posiƟon is
conƟnuously updated in a process called “relaƟve localizaƟon.” Conversely, in the absence of a known
iniƟal posiƟon, a beacon or landmark is required for the robot to esƟmate its own posiƟon. This is
known as “absolute localizaƟon” and is oŌen used for indoor flying robots. However, the requirement
for beacons limits this type of navigaƟon to pre-known environments [8].

Conversely, in a mapless scenario, a map is not provided but can instead be constructed beforehand
or concurrently with localizaƟon—a process known as simultaneous localizaƟon and mapping (SLAM),
which is a criterion for a robot to be considered as truly autonomous. However, robots can also
autonomously navigate without maps by relying on prominent landmarks, e.g., walls, to guide
movement [9].

2.2 Image RecogniƟon
Computer vision has recently become very popular, parƟcularly within clinical and medical
applicaƟons. Neural networks are employed to interpret images and detect objects. This secƟon is
organized into three subsecƟons: an overview of neural networks in general; an exploraƟon of Yolo, a
convoluƟonal neural network model specifically designed for image interpretaƟon; and a descripƟon
of tools uƟlized to implement computer vision.

2.2.1 Neural Networks
ArƟficial neural networks (ANNs), commonly known simply as neural networks (NNs), were first
developed in 1980 [6]. Neural networks are inspired by the human brain, parƟcularly in terms of
structure and learning processes. They comprise arƟficial neurons, which serve as processing units
and feature a mulƟple-input, single-output configuraƟon. The neurons are represented with nodes
that are organized into several layers, including an input layer, where data is received, and an output

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

7

layer, where the result is determined. The model may also include a variable number of hidden layers
situated between the input and output layer [14].1

Figure 2: Scheme of a shallow neural network [14]

The nodes within the network are interconnected by edges, each of which is assigned a weight
denoƟng its significance. IniƟally, these weights are assigned at random, but they are gradually
adjusted as the neural network undergoes training (or “learning”). When external input is received by
a node of the input layer, this input is mulƟplied by the weight of the corresponding edge. Considering
that each node receives mulƟple inputs from nodes of the preceding layer, these weight-mulƟplied
inputs are added up. More specifically, the operaƟon performed is known as an “acƟvaƟon funcƟon,”
which is essenƟally a weighted summaƟon. Typically, the domain of this funcƟon lies between [0,1] or
[-1,1]. Upon reaching a certain threshold, nodes switch from a state of inhibiƟon to one of excitaƟon
or vice versa [14]. There are different forms of learning, i.e., unsupervised and supervised learning
[103].

When a neural network learns by adjusƟng the weights according to predefined rules, without having
examples to learn from, this process is known as “unsupervised learning.” An illustraƟon is
“compeƟƟve learning,” characterized by the “winner takes all” learning rule. The rule sƟpulates that
the node with the highest response value following the weighted summaƟon is allowed to adjust its
weights, thereby becoming more significant, while the weights of the non-winning nodes’ edges stay
unchanged. In a slight variaƟon, the nodes surrounding the winning node can also slightly adjust their
weights.

Supervised learning occurs when the corresponding “real output”2 for each input is known. The output
of the neural network is calculated by “feeding forward” values, meaning that the values traverse the
network without encountering any cycles3. AŌer the neural network’s output is determined, the
discrepancy between the output of the neural network and the real output is calculated. This error is

1 Different terms are used for neural networks depending on the number of hidden layers they incorporate.
A network with no hidden layer is referred to as a “single-layer NN.” A network with only one hidden layer is
referred to as a “shallow NN” or a “common NN.” This type can be used for any conƟnuous funcƟon. A network
with two or more hidden layers is known as a “deep neural network,” which can be used for any disconƟnuous
funcƟon and is oŌen employed if increasing the number of nodes fails to improve performance.
2 The "real output" is the actual or wanted output of a given input.
3 A "cycle" is a structure where the input can circle back to previous layers before the output is determined. In
networks without cycles the informaƟon is transmiƩed in one direcƟon only (input layer to output layer) before
the output is determined.

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

8

then sent back from the output layer to the input layer, adjusƟng the weights of the edges along the
way accordingly. This process of feeding the values forward and sending the error backwards is known
as “backpropagaƟon” [14].

For example, if a neural network is trained to disƟnguish between cats and dogs, the weights are
iniƟally set at random. When a picture of a dog is then passed in, the neural network’s iniƟal predicƟon
might turn out to be 0.6 dog and 0.4 cat. In reality, however, the real output would be 1.0 dog,
prompƟng an adjustment of the weights. With these adjustments, the next Ɵme a dog image is passed
in, the predicƟon will ideally have improved—so that it might be 0.7 dog and 0.3 cat. However, it is
important to use an equal quanƟty of training data for both categories, as the network may otherwise
become biased toward the category on which it has been more extensively trained.

To opƟmize the neural network, the dataset is divided into training, tesƟng, and validaƟon sets.
Furthermore, the number of nodes as well as the number of hidden layers can be adjusted. To
determine the opƟmal number of nodes, their number can be either incrementally increased or
decreased from a high starƟng value. The laƩer approach works well because during training, the
impact of some nodes tends to zero, allowing their potenƟal removal.

Generally, the number of hidden layers is only increased if the neural network does not perform
accurately in spite of a large number of nodes. In contrast to making predicƟons aŌer training, the
actual learning phase of the neural network can be Ɵme-consuming, as parameters such as weight
and number of nodes are not yet fixed and require adjustment. A significant risk during training is that
the network overlearns the provided samples, which is more likely to occur with backpropagaƟon. As
a consequence, the training indicates minor errors, but the predicƟons of the trained model are flawed
with major errors—this known as “overfiƫng.” Another unwanted result of training occurs when large
errors are already indicated during the learning process, leading to poor predicƟons—also known as
“underfiƫng.” Both overfiƫng and underfiƫng should be avoided during neural network training
[14].

2.2.2 Yolo: A ConvoluƟonal Neural Network
The human brain analyzes its surroundings primarily through vision, receiving 83% of its informaƟon
via this sense and 11% through hearing. Therefore, when imitaƟng the way humans perceive their
environment, computer vision is fundamental, while natural language processing is also of interest to
understand how humans interact. One of the most significant neural networks in these domains is the
so called “ConvoluƟonal Neural Network,” which also serves as a core component of the robot
discussed in this thesis. The ConvoluƟonal Neural Network is classified as a deep feedforward network,
implying that it incorporates two or more hidden layers through which informaƟon progresses in one
direcƟon only without cycling back in between. Like all other neural networks, it contains an input
layer as well as an output layer. The hidden layers serve varied purposes: the convoluƟonal layer
extracts visual features such as outlines and shadows to reduce the number of connecƟons in the
neural network; the pooling layer reduces the size of the image; and the fully connected layer has the
role of backpropagaƟon in the neural network [14,3].

ConvoluƟonal neural networks are employed to analyze images due to their proficiency in recognizing
paƩerns. The convoluƟonal neural network known as “Yolo” is a significant development in the field
of computer vision. Its name—an acronym for “you only look once”— refers to its unique architecture.
Contrary to the usual approach of spliƫng the process of image analysis into “feature extracƟon” and
“regression and classificaƟon,” Yolo employs a single-stage detecƟon process, making it more suitable
for real-Ɵme image analysis [3].

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

9

Yolo-v8 is an improved version of Yolo that uƟlizes unsupervised and supervised learning in
combinaƟon [3,102]. Furthermore, it generates so-called “anchor-free” models. Anchor boxes are
rectangular areas posiƟoned within images where the neural network most frequently predicted
bounding boxes during training. A bounding box is the rectangular output area indicaƟng where an
object was detected. It is common to predict an object’s locaƟon by calculaƟng the offset from anchor
boxes [103].

Figure 3: Anchor boxes in old Yolo versions [103]

However, Yolo-v8 improves this process by localizing only the grid cell containing the center of the
object, while disregarding the surrounding grid cells [3]. As a result, the model is much more efficient,
as the number of anchor boxes is significantly reduced [10]. To analyze the performance of the model,
several situaƟons must be disƟnguished:

- TP – A “True PosiƟve” evaluaƟon relates to a situaƟon in which the true class of an object has
been correctly idenƟfied, e.g., there was a dog which was correctly idenƟfied as a dog.

- TN – A “True NegaƟve” evaluaƟon relates to a situaƟon in which there is no object and the
model has correctly not idenƟfied any object, e.g., there was no dog and nothing was
categorized to be a dog.

- FP – A “False PosiƟve” evaluaƟon relates to a situaƟon in which in which the object has not
been associated with the right class. Examples are that there is no object but the model has
incorrectly idenƟfied one, or there is a dog that is incorrectly idenƟfied as a cat.

- FN – A “False NegaƟve” evaluaƟon relates to a situaƟon in which there is an object but the
model has failed to idenƟfy, e.g., there was a dog which has not been idenƟfied as a dog.

Accuracy can then be calculated as the fracƟon of true evaluaƟons over all evaluaƟons, with

்௉ା்ே

்௉ା்ேାி௉ାி
 (1)

Precision is calculated as the fracƟon of True PosiƟves among all posiƟve evaluaƟons, with

்௉

்௉ାி௉
 (2)

[14]. This approach has been used for my analysis.

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

10

2.2.3 Plaƞorm and Library for Computer Vision ImplementaƟon
In my work, I have uƟlized several tools to implement the principles described in the previous
paragraphs, the most important of which are Roboflow and OpenCV.

Roboflow is a plaƞorm that enables users to annotate images and train computer vision models. It is
parƟcularly user-friendly, as Roboflow’s training stops as soon as overfiƫng begins. However, “being
a proprietary product, the algorithmic details about the network are not disclosed to the public” [10,
page 6].

OpenCV is an end-user friendly, open-source library primarily used to idenƟfy, classify, and track
objects. The library contains built-in methods for processing visual inputs and analyzing their paƩerns
[5].

The most widely known methods are [4]:

- To import an image: cv2.imread(path, flag)—if the path is invalid, an empty matrix is
returned

- To save an image: cv2.imwrite(filename(inc. extension), image))
- To display an image: cv2.imshow(windowname, image)
- To close the window: cv2.destroyAllWindows()

3 Robot Design and Development Process
In this chapter, I first describe the robot’s overarching, simplified mode of operaƟon (3.1), followed by
the funcƟonaliƟes of the individual elements (3.2) and the detailed mode of operaƟon (3.3). I then set
out the configuraƟon of the most important soŌware and hardware components (3.4). Lastly, I turn
to the process that I followed to test the capabiliƟes and limits of my robot (3.5).

3.1 Simplified Mode of OperaƟon
In this secƟon, I outline the methodical procedure by which the robot’s funcƟonal capabiliƟes are
iniƟated. Upon pressing the “*” key on the membrane switch module, the computer vision model is
downloaded. The robot is then designed to start its quest once the “1” key is pressed. In a first step,
the robot is programmed to take pictures that are then analyzed by my computer vision model in
search of objects. In this thesis an object is considered to be an instance of the computer vision
model’s class “lying person.” In the event that an object—i.e., someone lying on the floor—is
idenƟfied, external help is alerted through the dispatch of an email requesƟng help. AƩached to this
email are pictures with the object marked accompanied by a confidence level indicaƟng the likelihood
that the image actually contains said object. In the case that no object has been idenƟfied, the
Raspberry Pi then establishes a connecƟon with the Arduino, which is responsible for controlling two
ultrasound sensors. These sensors measure the distances and, subsequently, the robot’s direcƟon of
movement is determined. To minimize the probability of driving in the wrong direcƟon, the two
distances are measured three Ɵmes before the robot moves. The cycle of taking pictures and moving
then begins anew.

The overview flowchart illustrates the simplified process described above:

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

11

Figure 4: Simplified overview flowchart—decision-based order of fundamental funcƟonaliƟes

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

12

3.2 FuncƟonaliƟes
This secƟon is divided into three main subsecƟons, detailing the robot’s three core funcƟonaliƟes:
autonomous driving, object detecƟon, and external alerƟng.

3.2.1 Autonomous Driving
This secƟon is divided into two main subsecƟons, namely driving and autonomous navigaƟon in an
indoor environment.

Driving
The main hardware components uƟlized for autonomous driving are a Raspberry Pi 4+ and an Arduino
Uno. In this context, the Raspberry Pi 4+ acts as the processor, which is essenƟally a small but powerful
computer capable of running an operaƟng system and managing complex tasks. The Arduino Uno, on
the other hand, acts as the microcontroller, which is more suited to handling real-Ɵme sensor data
and simple, repeƟƟve tasks. The Raspberry Pi 4+ controls the direcƟon and speed of four motors, while
the Arduino Uno operates two ultrasound sensors, performs measurements, and calculates distances,
thereby deciding on the direcƟon of movement, which it reports to the Raspberry Pi. In this context, I
introduced the concept of primary and subordinate devices. As the primary device, the Raspberry Pi
is responsible for controlling all the various components and coordinaƟng the execuƟon of their
different funcƟons. Conversely, the Arduino, as a subordinate device, performs specific predefined
funcƟons and then reports back to the primary device.

When assembling the hardware, I connected the motors on each side in a parallel circuit. Due to the
positioning of the fixing screws, I had to mount the motors facing in opposing directions. Therefore, it
was essential to cross-wire the motors on each side to ensure that they turned in the same direction,
rather than in opposing directions.

Figure 5: Wiring of the motors (leŌ) with cross-wiring (right)

Furthermore, I soldered a small circuit in order to connect a 100mF 25-volt capacitor in parallel to the
motors. This is essential, as the motors operate based on the constant reversion of polarity, which can
lead to electromagnetic interferences. Moreover, the motors tend to draw large amounts of current
from the Raspberry Pi, which could cause constant rebooting [7].

Figure 6: Capacitor circuit (top view leŌ, boƩom view right)

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

13

The circuit was built and the program threw no excepƟons—but nothing moved. I therefore tested
the motors with an Arduino where I knew from previous projects that my code worked. The motors
did not turn there either, suggesƟng a hardware issue. I then tested whether current was flowing in
the circuit, and discovered it was not. I then noƟced that the H-bridge4 was damaged. AŌer replacing
the H-bridge and a few cables, the motors finally turned.

AŌer this problem had been resolved, I realized that my right wheels would only turn forwards but
not backwards and assumed the problem was related to the wiring of the motors. Motors have three
pins: one to enable the motor, i.e., to make it turn (ENA), one for driving it forwards (A), and one for
driving it backwards (B). These pins can be set to either “LOW” (no current) or “HIGH” (current).
Unfortunately, it was not clear which pin was which.

In total there are 23 combinaƟons of seƫng the pins to HIGH or LOW but instead of trying all eight I
produced a table where I logically excluded all combinaƟons that were impossible, e.g. HIGH, HIGH,
HIGH, as the motors cannot turn forwards and backwards at the same Ɵme. Furthermore, I knew that
the enabling pin (ENA) had to be set to HIGH as it enables the motor to turn. As the motors did turn
forwards, I could deduce that pin B (column 3) was as intended the one responsible for turning
backwards as it was the only one set to LOW. Furthermore, I then knew that one of the two pins set
to HIGH (in column 1; row 1, row 2) was the enabling pin. But when I tested the motors to turn
backwards, they did not move indicaƟng to me that I had misassigned the enabling pin. Therefore, I
tested A being the new ENA and ENA being the new A which then made the motors successfully turn
backwards.

Table 1 exemplifies how I systemaƟcally approached the problem:

 Original assignment Test 1 Test 2 Test 3 New assignment
 1 ENA HIGH HIGH LOW A
 2 A HIGH LOW HIGH ENA
 3 B LOW HIGH HIGH B
 Desired behavior forwards backwards test
 Actual behavior forwards no move backwards

Table 1: Overview of wiring opƟons for motors, as part of an error analysis.

Autonomous navigaƟon
As a relaƟvely simple method for autonomously navigaƟng an apartment, the robot’s primary
guideline for movement is to follow walls. This process necessitates two distance measurements:

Upon acƟvaƟon, the Arduino requires the first ultrasound sensor to measure the distance to the
nearest object in front of the robot. AŌer a predefined delay, the second ultrasound sensor measures
the distance to the closest thing on the right, i.e., the wall. Ultrasound sensors measure the distance
by registering the Ɵme between emiƫng an ultrasonic signal and receiving its reflecƟon;5

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑐𝑚) =
௧௜௠௘(µ௦)

ଶ
∗ 0.03432

௖௠

µ௦
 (3)

4 An H-bridge circuit enables voltage polarity reversal and is uƟlized here to facilitate forward and backward
operaƟon of DC motors.
5 The measured interval is the Ɵme that the sound takes to traverse the distance from the robot to the object
and back. Therefore, the Ɵme has to divided by 2 and then mulƟplied with the speed of sound to calculate the
distance.

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

14

AŌer calculaƟng the distances in two direcƟons, the Arduino differenƟates among four possible
scenarios, as illustrated in Figure 7, and returns one of the corresponding values.

If something is closer than 15 cm on the right and in front, the robot assumes it has hit a cul-
de-sac and reverses. This scenario is depicted in Figure 7 by a red hatched area.

If something is closer than 40 cm on the right and something else is closer than 50cm in front,
the robot foresees a potenƟal cul-de-sac and turns leŌ. This situaƟon is illustrated in Figure 7
by a light blue hatched area.

If something is closer than 40 cm on the right and there is nothing in front for at least 50cm,
the robot advances. This is represented in Figure 7 by a green hatched area.

If there is nothing on the right for more than 40 cm, the robot recognizes that the wall turns
a corner and turns right. This scenario is shown in Figure 7 as a dark blue hatched area.

The sketch in Figure 7 illustrates the four cases:

Figure 7: IllustraƟon of movements depending on distance measurements in two direcƟons

In Figure 8, an illustraƟve example of a living room and a kitchen is presented, demonstraƟng a typical
layout. The diagram uses solid lines to represent the walls, which define the boundaries and structure
of the rooms. DoƩed lines indicate doors, which is important because closed doors restrict the search
area the robot can cover. By recognizing walls and doors, as shown in this figure, the robot can follow
the walls conƟnuously, allowing for a systemaƟc and thorough exploraƟon of the apartment. Figure 8

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

15

not only depicts the layout but also serves as a visual guide to understand how the robot would
navigate and search within such an environment.6

Figure 8: IllustraƟon of decision rules in an example apartment

The arrows indicate the robot’s path in its search of an object. The leƩers B, R, L, and F represent the
“direcƟons” the robot can planarly move in. AŌer ultrasound measurements are taken, the Arduino
Uno determines the direcƟon of movement by evaluaƟng a direcƟon’s two condiƟons: “distance right”
and “distance front.” Crosses represent areas where the robot cannot move as the walls are too close.
Free space, on the other hand, is represented with a short, doƩed line. All features in light green—
i.e., condiƟons, crosses, and doƩed lines—are associated with the right ultrasound sensor, while all
those in light blue are associated with the ultrasound sensor on the front.

6 However, this requires the robot to be placed iniƟally within 40cm of a wall on its right, since it cannot
autonomously orient itself to find a wall to follow.

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

16

3.2.2 Autonomous Object DetecƟon
To detect a person lying on the floor, I used the computer vision library OpenCV, menƟoned in
Chapter 2. IniƟally, I familiarized myself with this library by using pre-developed models that
encompassed facial recogniƟon, posiƟon esƟmaƟon, and hand detecƟon. These models aided my
understanding of OpenCV’s funcƟonality and how the models are typically implemented in code.
However, they were not directly applicable to my specific problem of detecƟng people on the floor.

My original plan was to uƟlize posiƟon esƟmaƟon to define certain cases where external help should
be alerted. As it seemed quite complex to adapt the source code, I decided to train my own model
using data that I generated myself. For training my object detecƟon model, I used the neural network
Yolo-v8, also menƟoned in chapter 2. Furthermore, I chose object detecƟon—which also localizes the
object—over image classificaƟon, which solely determines the presence of an object within an image.
To ensure the robot could handle a variety of potenƟal scenarios, I maximized the diversity of my
image dataset, using footage of eight individuals represenƟng different ages and genders, who
assumed various posiƟons: lying on their back, front, or side with their arms and legs posiƟoned at
various angles. Furthermore, I took the pictures from various distances and angles in different
locaƟons. This led to a database of 3325 pictures. I then used the Roboflow plaƞorm to label the
pictures by outlining all people lying or siƫng on the ground. I marked everything else as a null image,7
which indicates to the neural network that there are no objects to be framed within bounding boxes
in those images. Finally, I uƟlized Roboflow to train my model with Yolo-v8, achieving a precision of
98.8%, which I deemed more than saƟsfactory for my purposes. I had originally planned to apply the
model on a live stream, to detect objects in real Ɵme, which one usually does with Yolo-v8 as it is an
anchor-free neural network (also menƟoned in chapter 2). Therefore, I programmed my code to
access a public website that allowed users to plug in user credenƟals of the desired model and of the
visual data to be processed. However, this turned out impossible for me, as a firewall denied my code
to enter a link to my livestream on the website. I circumvented this problem by downloading the
model on to my Raspberry Pi instead of using the public link. I then applied the model locally—without
a livestream link—on three images per cycle of collecƟng visual data and driving. The model then
successfully indicated whether an object was found and how certain it was that this actually was an
object and saved the picture with the corresponding bounding box.

The most significant problem I had was how to circumvent issues concerning the availability of up-to-
date soŌware. I encountered many problems when trying to get the camera to work properly, which
was essenƟal for my project. I had originally installed the “Bullseye” operaƟng system, as this was the
newest version at that Ɵme. However, aŌer trying to “fix” my code when the camera did not work, I
discovered that the camera funcƟon was “deprecated” for this operaƟng system, which essenƟally
meant that the camera could not open due to a bug in the operaƟng system. I then proceeded to
download a previous version of the operaƟng system enƟtled “Buster.” There the camera worked, but
the problem I had was the installaƟon of the OpenCV library (secƟon 2.2.3), which was necessary for
image recogniƟon. Either the connecƟon broke off or dependencies had not been installed, meaning
that I needed to download other soŌware packages first. AŌer connecƟng the Raspberry Pi directly to
the ethernet and finding the best version for my operaƟng system, I could download and access the
OpenCV library. Once the other funcƟonaliƟes had been programmed, I wanted to test my robot and
run the computer vision model on the Raspberry Pi. When I ran my program, however, an error
message indicated that my operaƟng system was too old to run the Yolo-v8 model. Luckily, a new

7 More precisely, I iniƟally planned to disƟnguish lying from siƫng people. However, due to the comparaƟvely
small amount of data (125 out of 3325 pictures), image recogniƟon quality was low and I abandoned the
disƟncƟon between different non-fall poses.

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

17

operaƟng system called “Bookworm” was released at that Ɵme. Having learned that Bookworm limits
modificaƟons to the operaƟng system, I then downloaded OpenCV in a virtual environment, imported
my programs, and ran the main file, which finally worked.

3.2.3 External AlerƟng
To alert external help when a person lying on the floor was detected, I had iniƟally programmed the
Raspberry Pi to take full control of my phone and let it make a call. However, this method was prone
to mistakes as the mouse and keyboard automaƟcally fulfilled their clicking and typing tasks in spite
of the fact that the screen was someƟmes too slow to load. As a consequence, the commands were
someƟmes executed in a very unƟmely manner, leading to incorrect operaƟons. Therefore, I decided
that the robot would alert external help via an email (see standard alert text in Figure 9). The email
consists of a text body requiring immediate assistance and includes the pictures of the person in need,
with the corresponding bounding box around the object (as illustrated in Figures 10 and 11).
Moreover, the level of confidence regarding whether what was detected is actually a fallen person is
also indicated (Figure 12).

Figure 9: Default alert email

Figure 10: AƩachments of two pictures in which an object was detected, in addiƟon to one file per
image that is automaƟcally created and cannot be opened

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

18

Figure 11: Detail of Figure 10 showing the predicted bounding box (thin blue line) delineaƟng the
detected person on the floor

The model returns the properƟes of the bounding box of the images containing an object. The
confidence is of parƟcular interest.

Figure 12: Example confidence level of having detected an object in the image

On very rare occasions, the model fails to detect a person lying on the floor, even though one is
present. Therefore, I decided that three pictures should be taken before the robot would restart the
cycle of analyzing images and driving. In Figure 10 above it incorrectly failed to idenƟfy any lying
person (False NegaƟve case) in one out of three images.

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

19

3.3 Detailed Mode of OperaƟon
The flowchart below indicates the full funcƟonaliƟes of the robot as opposed to the simplified version
in chapter 3.1.

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

20

Figure 13: Detailed flowchart with funcƟonaliƟes of the main components

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

21

Currently, the robot is acƟvated by running the file “main.py.” Therefore, one must first log in to the
Raspberry Pi (with ID and password not specified here) and take over control via TeamViewer. Once
logged in, the virtual environment is accessed via console with the command “source
virt/bin/acƟvate” where “virt” is the virtual environment. The main file is then executed with the
command “python /home/victoria/virt/robot_final/main.py”. Instead of a simple on/off buƩon, I
chose a membrane switch module to acƟvate the robot. This choice facilitates program expansion and
the integraƟon of addiƟonal funcƟonaliƟes at a later stage. The Raspberry Pi remains in standby mode
unƟl a key is pressed on the membrane switch module. To download the computer vision model, “*”
must be pressed as the first key, otherwise no image recogniƟon can be performed.

Upon pressing the “1” key, the robot starts its quest of locaƟng a person lying on the floor. Following
this iniƟaƟon, the robot operates completely autonomously, first taking pictures and then analyzing
them.

- If an object has been detected in at least one image, the image(s) of the folder “recognized”
with the corresponding confidence level(s) is aƩached to an email. The robot then stops.

- On the other hand, if no object is detected, the raspberry commands the Arduino to determine
the direcƟon via ultrasound sound sensors and proceeds to start driving.

The remaining keys are designed to facilitate robot tesƟng. They are outlined below:

- If key “2” is pressed, pictures are taken, analyzed, and stored at a locaƟon where previous
pictures are overwriƩen if the model has been downloaded before (key “*”). Regardless of
whether pictures could be taken or not, the robot pauses and awaits the next key instrucƟon.

- If key “3” is pressed, the three pictures in the folders “recognized” and “not recognized” are
aƩached to an email along with the corresponding confidence levels, and the email is then
sent to the “test emergency contact.”

- If key “4” is pressed, the robot drives forward.
- If key “5” is pressed, the robot reverses.
- If key “6” is pressed, the robot follows a forward leŌ-hand curve.
- If key “7” is pressed, the robot follows a forward right-hand curve.
- If any of the other nine keys is pressed, the program stops.

3.4 SoŌware and Hardware ConfiguraƟon
3.4.1 SoŌware Architecture

I organized my code into small units to facilitate tesƟng and debugging. More precisely, I structured
my code into different classes. A class is a blueprint version of an object, which is also called an
“instance.” A class has variables (so-called “aƩributes”) and funcƟons (so-called “methods”) for each
object. For example, the aƩributes of an LED would be its pin numbers, whereas its method could be
to glow red. If several LEDs are to be operated, wriƟng the same methods and variables for all of them
would make the code hard to follow and highly suscepƟble to errors. Instead, classes prevent code
duplicaƟon by allowing the creaƟon of instances for each LED where only certain parameters differ
between the objects, such as the GPIO pins of the Raspberry Pi that the LEDs are connected to.

Instances are created with:

instanceName = className(parameters) led1 = Led()

Methods of an instance are called:

 instanceName.methodName(parameters) led1.red(3)

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

22

The diagram below is a UML class chart that illustrates the different classes I created, along with their
aƩributes (including their types) and methods. The underlined variables are class variables which are
used by every instance while all others are instance variables that can differ from object to object. The
“-” signs specify the aƩribute or method as private, whereas the “+” signs specify that they are public
and can be used by any other class.

Class8

Figure 14A: Overview of UML classes, including aƩributes, types, and methods

8 There are no associaƟons indicated as they are only called by the file "main.py" and do not directly depend on
each other.
The type "-" signifies in this UML chart that in order to find the real type, more Ɵme would have to be spent to
analyze the source code of Roboflow models.
Due to some iniƟal confusion over the fact that in Python aƩributes and methods cannot be truly private, as in
languages such as Java, not all aƩributes have been consistently implemented as being private yet.

Led

- redPin: int
- greenPin: int
- bluePin: int

+ setup(): void
+ turnOff(): void
+ white(t:int): void
+ red(t:int): void
+ green(t:int): void
+ blue(t:int): void
+ lightGreen (t:int): void
+ purple(t:int): void
+ turquoise(t:int): void

Movement

+ s: int
+ speed1: RPi.GPIO.PWM
+ speed2: RPi.GPIO.PWM
- Motor1Ena: int
- Motor1A: int
- Motor1B: int
- Motor2Ena: int
- Motor2A: int
- Motor2B: int

- cleanup(): void
- setBack(): void
- sleep (t: int): void
- leŌ (minus_speed: int): void
- backwardsLeŌ (minus-speed:int): void
- right (minus-speed:int): void
- backwardsright (minus-speed:int): void
+ forwards (t: int): void
+ backwards (t: int): void
+ stop(t: int): void
+ curveLeŌ(t: int): void
+ curveRight(t: int): void

Ultrasound

- arduino: Arduino
- index: int
- instrucƟons: list <int>
- answer: str
- notReached: Bolean
- answer2: str
- toDo: int
- ansInt: int

- evaluaƟon(ansInt: int): void
+ direcƟon(): int

Image_recogniƟon

- folder: str
- rf: Roboflow
- project: -
- dataset: -
- model: -
- det: int
- file_path: str
- f: File
- neutral_path: str
- output_path: str
- alternate_path: str
- confidence: int
- overlap: int
- predicƟon: -
- objects_detected: int

+ image_analysis (): int

Alert_email

- email_sender: str
- email_password: str

+ dicƟonary: str
+ situaƟon: str
- email_receiver: str
- subject: str

- body: str
- em: Email message
- image_data: bytes
- image: M/ME image
- image_path_pred: str
- image_path_no_pred: str
- file_path: str

- text_data: str
- text_message: MIME text
- context: SSLC context

+ send(): void

Keypad

- matrix: list <int&&str>
- col: list <int>
- row: list <int>
- value: str <int>
- not_pressed: Bolean

+ key_pressed (): str || int

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

23

Figure 14B (conƟnuaƟon): Overview of UML classes, including aƩributes, types, and methods

- The class “Ultrasound” establishes the connecƟon to the Arduino and interprets the direcƟon
of movement.

- The class “Movement” controls the direcƟon and speed of the motors.
- The class “Led” controls the LED’s color and duraƟon of shining.
- The class “Image_recogniƟon” takes and saves images, analyzes them with the computer

vision model and determines the number of objects.
- The class “Alert_email” aƩaches images to a warning message and sends the email.
- The class “Keypad” determines which key is pressed on the membrane switch module.
- The dicƟonary “p_key_final” stores passwords.
- The dicƟonary “var_final” stores variables such as plain text and pin numbers.

3.4.2 Hardware Architecture

The sketch below shows the different hardware components, with colors indicaƟng what they are
connected to. The same colors on different hardware components signify that there is a cable
connecƟon.

Figure 15: Wiring of hardware components

var_final

+ situaƟon: str
+ email_receiver: str
+ subject: str
+ body: str

- col: list <int>
- row: list <int>
- redPin: int
- greenPin: int
- bluePin: int

- Motor1Ena: int
- Motor1A: int
- Motor1B: int
- Motor2Ena: int
- Motor2A: int
- Motor2B: int

p_key_final

- api_rob: str
- email_aut: str

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

24

The hardware components are:

- A Raspberry Pi 4B+, which is the primary device that has overall control. It is directly connected
to the Arduino Uno, the H-bridge, the breadboard, the membrane switch, the LED, and the
power bank.

- An Arduino Uno, which is the subordinate device that determines the direcƟon by controlling
ultrasound sensors and reports back to the Raspberry Pi.

- Two ultrasound sensors, which measure distances by emiƫng and receiving ultrasonic waves.
- Four DC motors, which are responsible for seƫng the robot in moƟon.
- An H-bridge, which connects the motors.
- A soldered circuit with capacitor, which is connected to the H-bridge and serves as temporary

power storage.
- A breadboard on which hardware components are connected and resistors can be built in.
- A membrane switch module in the form of a keypad, which allows users to execute tasks

manually.
- An LED, which indicates running processes.
- Two power banks, which serve as a power supply.

All these hardware components, when assembled together, result in a small, robust robot that will
hopefully soon be used in households to take care of the elderly.

Figure 16: My robot

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

25

3.5 Empirical TesƟng

This secƟon elaborates on how I tested the quality of my robot’s assessments of people in different
situaƟons. I was thereby able to determine when the robot operated flawlessly, pinpoint its
constraints, and understand the elements upon which its success or failure hinges. These tests mainly
related to the quesƟon of whether images retrieved by the robot were accurately matched to how it
was trained. Figures 17 and 18 exemplify the principles of this matching before I detail my tesƟng
procedure:

When creaƟng the computer vision model, I marked the outline of the person lying (as shown in “How
trained” in Figure 17). During tesƟng, the model would therefore annotate images as “fallen” and
enclose the object in a blue bounding box (denoted as “True PosiƟve” in Figure 17). However, there
were instances where the presence of a lying person was not correctly registered by the model (as
shown in “False NegaƟve” in Figure 17). Minimizing these False NegaƟves is vital, as they represent
situaƟons when an alert should be executed but is not.

Images
How trained: True PosiƟve - where it correctly

detected:
False NegaƟve - where it should have
detected, but did not:

Figure 17: Visual representaƟon of training examples (“How Trained”) compared to actual assessments
of the robot in which an alert should be sent (“True PosiƟve” and “False NegaƟve”)

However, the robot should not alert anybody if no accident has occurred (Figure 18). Therefore, I had
trained the model with “null images” where I did not annotate anything because nobody was lying on
the floor (“how trained”). If the robot did not idenƟfy any object during tesƟng because no person
was lying on the floor, this was assessed as a True NegaƟve. SomeƟmes, however, it did idenƟfy an
object (surrounded by the blue bounding box) even though no target was lying on the floor (False
PosiƟve).

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

26

Images
How trained: True NegaƟve—

where it correctly did not idenƟfy:

False PosiƟve—
where it detected but should not
have (false alarm):

Figure 18: Visual representaƟon of training examples (“How trained”) compared to actual assessments
of the robot in which no alert should be sent (“True NegaƟve” and “False PosiƟve”)

In order to systemaƟcally test the quality of my robot in its evaluaƟon of situaƟons in which people
had fallen to the floor, I proceeded with the following steps:

1. Preparing the evaluaƟon
2. Defining criteria for assessing the robot’s performance
3. Taking test pictures and having them assessed by the robot
4. Coding, i.e., assessing, the pictures according to different criteria and conducƟng random

checks
5. SystemaƟc data cleaning to ensure high quality of the sample
6. Data analysis according to pre-selected quality criteria

First, I developed a list of quesƟons that I wanted to address with my robot and that are detailed in
the results chapter. For example, I assumed that the robot would recognize people equally well
independent of their actual posiƟon on the ground. To be able to test these assumpƟons, I developed
a list of parameters (e.g. posiƟon) that would need to be represented in my evaluaƟon and assigned
aƩributes (e.g. lying) to each one. Taken together, these parameters led to coding guidelines for later
usage that included:

- Correctness of the robot’s evaluaƟon (True PosiƟve, True NegaƟve etc.)
- The posiƟon of the person (lying vs. siƫng, etc.)
- CharacterisƟcs of the person (gender, adult vs. child)
- Presence of the person in the training data (yes/no)
- The visibility of the person’s extremiƟes (how many legs visible, etc.)
- The perspecƟve of the robot (front vs. back, etc.)

In addiƟon, I defined a number of non-human test objects that I could use to test the robot’s
recogniƟon capabiliƟes—for example, objects such as stuffed animals, a dog, various blankets and
cushions, and so on.

Second, I defined the criteria by which I planned to analyze the robot’s strengths and its limits. I first
defined the situaƟons that I would judge as true or false and as posiƟve or negaƟve with the following
classificaƟon, based on the literature presented in chapter 2:

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

27

True PosiƟve (TP): A person lying on the floor has correctly been idenƟfied, i.e., the alarm is
executed because there is a person in need.

True NegaƟve (TN): The model has correctly predicted that there is no person lying on the
floor, i.e., no alert is executed because no accident has happened.

False PosiƟve (FP): The model predicts that there is a person lying on the floor even though
there is none, i.e., there is a “false alarm.”

False NegaƟve (FN): There is a person lying on the floor who should have been idenƟfied, i.e.,
there is no alert even though the person is in need.

I then referred to three values: accuracy, precision, and confidence (see also chapter 2).

Accuracy is defined as the raƟo of all correct assessments relaƟve to all assessments made. In other
words, accuracy describes how oŌen the robot correctly idenƟfies a situaƟon, whether a person is
actually lying on the floor or not.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
்௉ା்ே

்௉ା்ேାி௉ାி
 (4)

Precision is defined as the raƟo of all correctly idenƟfied, posiƟve situaƟons relaƟve to all situaƟons
with a posiƟve evaluaƟon. In other words, precision describes how oŌen an alarm that was issued was
actually correct (and conversely, 1-precision provides the percentage of “false alarms”).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
்௉

்௉ାி௉
 (5)

The confidence measure is a value between 0 and 1 provided directly by the robot and signifies how
certain the underlying model is that the idenƟfied object is indeed an object that should be recognized.
Any confidence under 40% is defined to be “no-object,” and therefore nothing is returned from the
model. Confidence levels above 40% are determined to be an “object,” and therefore the model
returns an image containing a bounding box around the object and returns values such as the
confidence (values between 0.4 and 1), the locaƟon of the bounding box, etc.

Third, I invited 12 people for a session of picture-taking, making sure that the following two criteria
were fulfilled: I sought a heterogeneous group encompassing a spectrum of different ages and
genders. AddiƟonally, I ensured that my sample of testers included some with whom the model had
been trained and some who were unknown in the database. During this session I took 716 pictures. In
selecƟng the picture seƫngs, I paid aƩenƟon to different posiƟons within the room and different
lighƟng condiƟons. In addiƟon, I included “empty” pictures in which only furniture was visible, but no
object that should be recognized by the robot, I also included several “experimental” seƫngs that I
used in order to idenƟfy the limits of my robot, i.e., to find out in which situaƟons it would perform
beƩer and in which worse. AŌer taking a number of pictures, I immediately checked their quality in
order to ensure that the procedure worked. Out of 716 photo shots, only two had to be excluded as
the robot actually failed to take a picture, suggesƟng an excellent failure rate of only 0.28%.

Fourth, I coded the remaining 714 pictures along the parameters and aƩributes and manually assigned
values to each of the parameters—most importantly, whether the robot had correctly idenƟfied fallen
people. As illustrated in Figure 19, this led to a database of 716 entries, of which 590 were pictures of
a single individual, 97 of objects such as stuffed animals, 18 of furniture (= pictures without special

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

28

items), and 9 were experimental pictures in which I changed the verƟcal angle of the robot. AŌer
coding about 20 pictures, I realized that my original coding guidelines were incomplete with respect
to the concrete posiƟon that a person siƫng on the floor could assume. ParƟcularly, I ventured that
the posiƟon of the legs (flat on the ground vs. bent) might influence the recogniƟon capabiliƟes of the
robot. Therefore, I specified the missing details in the coding guidelines and started coding from
scratch. AŌer having coded all pictures, I conducted random tests with about 5% of all pictures to
minimize any mistakes. For example, a typical random check involved the idenƟficaƟon of the
perspecƟve of the robot without looking at the code I had originally assigned. By and large, the original
coding seemed appropriate, although it would have been beneficial to involve a second person to
further minimize mistakes: someƟmes, making code assignments was a quesƟon of judgment—for
example, whether or not a black-socked foot was indeed visible in low lighƟng. In such cases of doubt,
a discussion with a second coder would have been helpful to increase reliability.

Figure 19: Number of test images per category

FiŌh, I engaged in systemaƟc “data cleaning” to ensure that the database was of sufficient quality for
analysis with Excel. This parƟcularly related to removing typographic errors in my codes such as “fornt”
instead of “front” or subtler problems with unifying near-duplicates such as “knee” and “knees” or
“back” vs. “back ” where the extra blank character at the end would make automated pivot analysis
difficult.

Sixth, in the final step, I analyzed the data. To do so, I went through the data to check for plausibility
and get a first systemaƟc impression—for example, whether the number of correct idenƟficaƟons of
people lying on the ground was credible, or whether confidence levels were in a reasonable range.
I then analyzed the data in Excel by applying combinaƟons of different filters, only to realize that this
procedure was too Ɵme-consuming and error-prone—i.e., there were too many different variables to
manually evaluate at the same Ɵme. Instead, I learned how to apply so-called pivot analyses that
automaƟcally apply filters to the database. While sƟll complex, this procedure allowed me to
systemaƟcally invesƟgate the performance of the robot, as laid out in the following chapter.

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

29

4 Results
To examine in which scenarios my robot is able to detect a fall and consequently alert external help,
I conducted tests for two different cases: the one-person-containing case (secƟon 4.1) and the person-
free case (4.2).

4.1 One-Person Case
My first series of tests contained exactly one person. This is the most important case, as I assume the
robot will be used by elderly people who are living alone.

PosiƟon of the Person
My main hypothesis was that the person’s posiƟon does not influence the quality of determinaƟon of
whether they have fallen to the floor or not. This assumpƟon was based on the fact that I conducted
an extensive training with 3325 pictures. I invesƟgated this assumpƟon by comparing the accuracy of
correctly idenƟfied “objects” and “no-objects” of a person in different posiƟons, as shown in Figure
20.

Figure 20: Accuracy of assessment depending on the posiƟon of the person (basis: 590 images)

The accuracy of a person “lying on the floor” as well as “standing or walking,” “siƫng on chair,” and
“lying on sofa” are all well above 90%, which I deemed extraordinarily high.

Specifically, I find it quite remarkable that the accuracy of the category “lying on sofa” (True NegaƟve)
is 96%, parƟcularly since I did not train the model on people “lying on sofa.” However, I did train the
model on not idenƟfying a sofa or a person siƫng on a sofa as an object, which makes the high
accuracy somewhat understandable.

At the same Ɵme, my tesƟng dataset for the category “kneeling or crouching” is not extensive, which
makes the more modest accuracy of 70% more understandable. Yet, it is important to recognize these
posiƟons effecƟvely, because they are “dynamic” (in the sense that a person could be in the process
of standing up or lying down) and as such merit more aƩenƟon. One way to deal with these posiƟons
could be to examine the series of three sequenƟal images and then compare differences. More
straighƞorwardly, one could also include them more prominently in the training data set of a future
model.

Compared to the other values, the accuracy of the “siƫng on floor” category of 31% is very low. In
other words, the robot incorrectly idenƟfied the seated person as lying down (False PosiƟve) in two-

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

30

thirds of the cases. The low values are not surprising for two reasons: First, a seated posiƟon resembles
a lying posiƟon much more closely than, for example, a standing posiƟon, because of the angle of the
upper body. While a disƟncƟon based on small differences is sƟll possible, if a low value of importance
has been assigned to the angle of inclinaƟon during training, it is clear that the robot will have
problems classifying those similar images. This problem is illustrated in Figure 21. Second, and more
importantly, the training set of this category is much too small, with 125 images out of 3325 in total,
and would need to be expanded in an updated version of the model.

False PosiƟve (siƫng) True PosiƟve (lying)

Figure 21: IllustraƟon of the difference between a siƫng posiƟon with both legs down (leŌ: False
PosiƟve) and a lying posiƟon with both legs up (right: True PosiƟve).

Different Siƫng PosiƟons
Due to the low accuracy when people are siƫng on the floor, it was important to know which “siƫng
posiƟon” is hardest to idenƟfy. Based on the illustraƟon in Figure 22, my assumpƟon was that the
more a siƫng posiƟon resembles a lying posiƟon, the harder it will be for the robot to make a correct
assessment. I invesƟgated this by comparing the accuracy of correctly not idenƟfying people in
different siƫng posiƟons.

Figure 22: Accuracy of determinaƟon in different posiƟons of people siƫng on the floor (basis: 95
images)

The cases of people siƫng with “both legs up,” “one leg up,” or “both legs invisible” are equally
accurate at around 40%. The accuracy of siƫng with both legs down, however, is below 20%, as the
resemblance to someone lying on their back is very strong. Further training of the underlying model
would have to take these findings into account.

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

31

Different Lying PosiƟons
Due to the high importance of the category “lying on floor,” I also analyzed the accuracy of people
lying on the floor in different posiƟons, similar to the analysis of siƫng people. Based on my learnings
so far, I assumed that the posiƟon of a person lying on the floor would not influence the quality of
determinaƟon. This assumpƟon was fueled by my thinking that the ability of the robot to correctly
assess a situaƟon would be based on the shape of the object rather than on the angle of any physical
features such as a face or knee. I invesƟgated this quesƟon with a comparison of the accuracy of
correctly idenƟfying “objects” in different lying posiƟons.

Figure 23: Accuracy of determinaƟon in different posiƟons of people lying on the floor (basis: 373
images)

Accuracy in all cases is very high: around 90% or above. However, the accuracy of idenƟfying people
lying on either side was even higher, which prompted the quesƟon of whether seeing two disƟnct legs
is of high importance.

Visibility of ExtremiƟes
Following my previous analysis, I assume that the visibility of extremiƟes influences the quality of
determinaƟon regarding whether a fall has occurred. I explored this quesƟon based on the accuracy
of correctly disƟnguishing between “objects” and “no-objects” depending on the extremiƟes that can
be seen9.

9 If something is placed in front of a lying person (e.g., a table leg), the model recognizes objects on either side
of the item. In a further analysis the confidence level for the different extremiƟes can thereby be analyzed.

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

32

Figure 24: Accuracy of determinaƟon depending on number of visible extremiƟes (basis: 590 images)

The number of visible feet and whether the head is visible or not have virtually no influence on
accuracy. Accuracy depending on the number of visible hands and arms is also almost the same. Yet,
astonishingly, the accuracy is around 5% worse when one arm or hand is visible than when no arm or
hand is visible at all.

Even more interesƟngly, seeing two legs decreases the accuracy by around 10% in comparison to when
one or no legs are visible. This is because the raƟo of siƫng to not-siƫng people in the training data
is greater with two legs than with one or zero. As the number of False PosiƟves is larger with the
number of siƫng people than with not-siƫng people, this might have had a major influence on
accuracy. An alternaƟve explanaƟon could lie in the coding procedure, which was based on only one
person, and even though care was taken to make appropriate coding judgments, this could be a source
of bias.

To further explore this topic, I also invesƟgated the precision of correctly disƟnguishing between
“objects” and “no-objects” depending on the extremiƟes that can be seen (Figure 25).

Figure 25: Precision of determinaƟon depending on number of visible extremiƟes (basis: 590 images)

Precision based on the visible extremiƟes is high, at around 80% overall. However, surprisingly, false
alarms are generally executed more oŌen when more extremiƟes can be seen, which provides another
indicaƟon that this should be analyzed in more detail in a further step of the project with improved
training and coding.

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

33

Age and Gender
I also analyzed several characterisƟcs specific to individual people. My assumpƟon was that the gender
and age (adult vs. child) of a person should not generally influence the quality of determinaƟon of
whether a fall has occurred. However, I am aware that the distribuƟon of genders in my training and
tesƟng data could affect outcomes. Again, I invesƟgated this by measuring the accuracy of correctly
disƟnguishing between “objects” and “no-objects” based on the type of person.

Figure 26: Accuracy of determinaƟon depending on type of person (basis: 590 images)

InteresƟngly, accuracy is higher for male adults than for female adults. I trained the computer vision
model with two men and six women (raƟo 1:3) and I deducted tests with four men and six women
(2:3), which led me to believe that the model would correctly idenƟfy women more oŌen.

The accuracy for toddlers and babies is high, in spite of the fact that I trained without those “types of
people.” However, the values have less significance, as I only had the opportunity to test those
categories with one toddler and one baby. Furthermore, a future model should not idenƟfy babies as
fallen, as they frequently lie on the floor and it is no cause for concern.

Influence of Knowing or Not Knowing the Person
Based on my extensive training data, I assumed that whether a person has been used for training or
not would not influence the quality of determinaƟon of whether a fall has occurred. I explored this
assumpƟon by measuring the accuracy of correctly disƟnguishing between “objects” and “no-objects”
based on whether the model had been trained with this person.

 Accuracy Precision
Person not known 84% 85%
Person known 79% 70%

Table 2: Accuracy of determinaƟon depending on whether the person is known from training or not
(basis: 590 images)

Both accuracy and precision are very high for people the model has not trained with. This signifies that
the training base was large enough for it not to influence the results.

Nevertheless, it is at first surprising that the accuracy of images with “known-people” is lower than
that for “not-known-people.” I assume this counterintuiƟve effect occurs because I could only test the
robot with two people who had served as training subjects, whereas I could employ 10 who were not
known to the model. Therefore a few False NegaƟve and False PosiƟve assessments of the people
known to the model could have had a disproporƟonate influence.

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

34

PosiƟon of the Robot
As not only the posiƟon of the person can vary but also the angle from which the robot approaches
and hence the perspecƟve the robot adopts, I also analyzed this case.

Specifically, I assumed that the posiƟon of the robot does not influence the quality of determinaƟon
of whether a fall has occurred. I tested this assumpƟon by measuring the accuracy of correctly
disƟnguishing between “objects” and “no-objects” based on different posiƟons of the robot, as shown
in Figure 27.

Figure 27: Accuracy of determinaƟon depending on the posiƟon of the robot (basis: 590 images)

All six posiƟons of the robot are based on about 100 pictures each and exhibit a high accuracy of over
70%. Yet, it is interesƟng to note that the highest accuracy occurs when the robot approaches from
the direcƟon of the person’s head. I assume this effect occurs because the robot can only approach
from the head when a person is indeed lying on the floor. As the accuracy of correctly detecƟng a lying
person is very high, the accuracy of the category “from head” is also very high. Hence, the accuracy
depending on the robot’s posiƟon is also influenced by the posiƟon of the person. Conversely, I
assume that the somewhat lower accuracy of pictures taken “from leŌ” or “from right” is influenced
by the fact that these perspecƟves are typical for people siƫng on the floor, which are harder for the
robot to predict. This is corroborated by a simultaneous analysis of the posiƟon of the person and the
robot (not shown in Figure 27).

4.2 Person-Free Case
My second series of tests relates to pictures that contained no person, which is also a likely situaƟon
if the user lives alone.

No Person Shown
My basic assumpƟon was that no object would be detected if no person was shown in the image.
I invesƟgated this by measuring the accuracy of correctly not idenƟfying “other-/no-objects.” Figure
28 shows that—to my surprise—the accuracy varies widely.

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

35

Figure 28: Accuracy of determinaƟon if no person is present (basis: 115 images)

For example, the package was determined with an accuracy of 100%, meaning it was always correctly
idenƟfied as no person. Moreover, an “empty” space, i.e. one containing only furniture, was correctly
recognized with an accuracy of 83%. In contrast, however, the blanket was always incorrectly
idenƟfied as a lying person. At first sight, this is surprising. However, one has to bear in mind that the
computer vision model was trained for shapes. Figure 29 illustrates this: the image on the leŌ shows
how I outlined the “lying person” and the image on the right shows what shape was saved. It is easy
to assume that the blanket can take a shape similar to the outline in the right picture. Correspondingly,
the robot falsely idenƟfied the blanket as a lying person as the model was trained in a Ɵdy
environment.

Figure 29: IllustraƟon of training data: lying person (leŌ) and abstract shape of the lying person (right)

Stuffed Animals
Given the importance of shape in the assessment, I further analysed the role shape with stuffed toy
animals.

My assumpƟon was that human-like soŌ toys would be more likely be recognized as a lying person
than non-human-like ones. The corresponding accuracy measurements reveal large differences
(Figure 30). For example, the dolphin (100% accuracy) and the owl (75%) were mostly correctly
idenƟfied as a non-person, while the seal was always incorrectly idenƟfied as a person. However, these

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

36

three categories suffer from too few tesƟng samples because, unfortunately, Roboflow limits the
number of Ɵmes a machine learning model can be run within a specific Ɵme frame. I tested the bear
the most extensively, with 30 images, as it seemed to bear the closest resemblance to a human baby.
Yet, the bear was incorrectly idenƟfied more oŌen than not as a “lying person” (27% accuracy).
Surprisingly, however, the dog—which ostensibly bears less resemblance to a human—was equally
oŌen incorrectly idenƟfied as a lying person (29%).

Figure 30: Accuracy of determinaƟon if no person is present (basis: 46 images)

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

37

5 Discussion
The newly built robot described in this thesis was able to navigate autonomously, assess situaƟons,
and issue alert messages in case a person had fallen. The results in chapter 4 provide a basis to
evaluate the funcƟonality of the robot and suggest areas of improvement. In my discussion, I cover
three broad areas: object detecƟon, navigaƟon, and funcƟonal extensions.

Object detecƟon
Overall, I was astonished by the capabiliƟes of the computer vision model to recognize image content.
This is evident from the high accuracy rates, but also became clear while coding the tesƟng images: in
many dark and backlit pictures, it proved difficult for human eyes to discern the picture content, but
the robot sƟll achieved correct assessments with high confidence scores.

With respect to accuracy, most importantly, the robot was capable of correctly idenƟfying nine out of
10 people lying on the floor. This accuracy was pracƟcally independent of a range of influence factors,
such as the person’s posiƟon or whether their extremiƟes were visible. While an accuracy of 100%
would obviously help to convince potenƟal users of the robot’s advantages, the current version can
be understood as a first prototype, and it is plausible that the accuracy will increase with improved
training. At the same Ɵme, the robot made mistakes in more than half of the situaƟons while assessing
situaƟons with people siƫng on the floor and in disƟnguishing stuffed animals and other objects from
real people. This is an area that needs significant improvement, but given the small number of training
pictures that were used, major improvements should be possible.

A related criƟque that could be voiced is that my training in the main categories “lying” and “non-
lying” bears many simplificaƟons in comparison to real-life situaƟons. This can easily be improved with
a larger database for training. Specifically, I would re-train my model in the same categories “lying-
adult,” “ground-siƫng-adult,” and “null.” However, I would employ a training set that is equally
distributed between those categories. Furthermore, the “null” category should contain not only
people who are “walking” and “chair-siƫng,” but also “toddlers & babies” and “inanimate objects.”
This seems relevant as “toddlers & babies” lying on the floor is an everyday event. I would also choose
to train the “null” category with more “inanimate objects,” as I trained the current model in an overly
Ɵdy environment, which reduced accuracy during tesƟng. Also, “dynamic posiƟons” such as geƫng
up could be covered in new training data with adequate coding.

Another quesƟon concerns the coding of the test images. It is currently a limitaƟon in the data
evaluaƟon that certain images can be interpreted differently—does half a hand qualify as a hand? Is
the head influenƟal in general, or is it facial features that are important for the categorizaƟon?
Therefore, it would have been useful to have somebody else evaluate all the data as well to increase
reliability of the assessments, meaning that potenƟally ambiguous data could have been compared.

NavigaƟon
Importantly, the accuracy of the robot’s assessments is independent of its perspecƟve, which means
that the way the robot navigates is, in principle, sufficient for the task at hand. One might quesƟon
whether people might trip over the robot, but this seems unlikely as the device does not roam around
freely, interfering with daily acƟviƟes, but rather always follows a wall. Nevertheless, other ways to
facilitate navigaƟon should be considered.

Specifically, the robot is currently limited in its autonomous navigaƟon by the fact that an open
stairwell would cause it to fall. Similarly, while the robot can avoid obstacles, it is limited to those with
a rectangular footprint, as it is currently programmed to make only 90-degree turns. In other words,
chairs must not be placed against the wall. An alternaƟve means of navigaƟng the apartment would

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

38

be for the camera images to be processed in real Ɵme to plot the unit’s future path. This would make
direct use of the new Yolo-v8 funcƟonality of real-Ɵme processing, with which the environment could
be mapped. Another possibility would be to follow the target by employing triangulaƟon, which would
avoid a searching process. However, these opƟons were beyond the scope of this thesis.

FuncƟonal Extensions
A parƟcularly useful funcƟonal extension would be direct phone control and natural language
processing so that a person who has fallen can directly send messages via the robot. To implement
this, I have developed a program that can call desired contacts autonomously—however, this sƟll
needs to be refined due to occasional lagging between the robot and the phone. Furthermore, I have
programmed a voice recogniƟon model which I will soon implement into my code. It can disƟnguish
between sentences such as “Please help, I am hurt” and “I am fine” and will be instrumental to
determine whether to only send an email warning that a person might have fallen or to execute an
emergency phone call. Moreover, it would be helpful if the robot could have a more extensive
interacƟon with external help, i.e., interpreƟng their email response and sending close-ups of certain
angles if required.

In order to prepare the robot for use on a commercial level, it would be good to use adapƟve
“incremental learning” where more training data become available over Ɵme and the robot conƟnues
learning, as opposed to “tradiƟonal learning” where the computer vision model has completed its
training in advance. Furthermore, the robot could then learn that it is normal for people to lie on the
floor in certain areas—for example, while exercising—whereas in others it is a cause for alarm.

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

39

6 Conclusion
In this thesis, I have presented a new robot that I have designed, built, programmed, and tested that
is capable of autonomously navigaƟng a home, idenƟfying whether a person has fallen to the floor,
and sending an alert email in case of an emergency.

When comparing my robot to other devices for fall detecƟon as presented in the introducƟon, several
advantages can be listed: My automated robot remains fully funcƟonal even when a person is
unconscious, which does not apply for tradiƟonal emergency alert buƩons. Furthermore, my robot
provides concrete informaƟon on the user’s state of well-being by sending images that can be
analyzed by the recipient. This does not affect the user’s privacy, as pictures are only saved when they
need assistance. As my robot autonomously navigates around an apartment, there are no blind spots
provided all internal doors remain open. Disadvantages mainly relate to the accuracy of the
assessments that the robot currently makes, parƟcularly in disƟnguishing between people siƫng and
lying down. However, the overall performance of my computer vision model suggests that this should
be easily surmountable with more extensive training.

To conclude, my matura thesis provided me with an extremely enriching experience in which I was
able to combine designing, building, and programming a robot and conducƟng an empirical analysis
of its performance. Not only did I manually assemble hardware components and learn how to solder
electric circuits, but I also deepened my knowledge in object-oriented programming, designing my
soŌware, generalizing the code such that funcƟonaliƟes could be easily modified, and logically
breaking down and tracing errors. Furthermore, I learned how to conduct extensive empirical tests
and how to evaluate large amounts of data. As well as reiteraƟng that it was an extremely fun
experience, I am especially glad to say that my robot might play useful a role in households where
elderly people would otherwise have to move into reƟrement homes. I hope that my autonomous
robot will improve their quality of life by helping them conƟnue to live independently.

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

40

7 Bibliography
7.1 TradiƟonal Sources
1. De Haes, Bert Antoon; Pelgrims Roeland; Verrept, SƟjn (2020): An Elderly Care and Security

System: EP 3 723 456 A1
2. Florczyk Stefan (2005): Robot Vision, Video-based Indoor ExploraƟon with Autonomous and

Mobile Robots, IntroducƟon to Chapter 3, and Chapters 3.2 to 3.4, Wiley VCH Verlag GmbH &
Co, Weinheim.

3. Hussain, Muhammad (2023): YOLO-v1 to YOLO-v8, the Rise of YOLO and Its Complementary
Nature toward Digital Manufacturing and Industrial Defect DetecƟon, Machines 11 (7), page
677.

4. Kumar Suresh B.; Raju Viswanadha S.; Maheswari Uma V. (2023): OpenCV libraries for
computer vision: ApplicaƟons of Visual AI and Image Processing, edited by Pancham Shukla,
Rajanikanth Aluvalu, Shilpa Gite and Uma Maheswari, Berlin, Boston: De Gruyter, 2023, pages
1-22.

5. Mar-Hernandez, Pedro Guillermo; Ibarra-Angulo, Pedro Luis; Grijalva- Acuna, Juan Carlos;
Abril-Garcia; (2023) Journal Computer Technology Dec. Vol. 7, No. 19 pages 1-9

6. Richeng, Cheng (2020): A survey: Comparison between ConvoluƟonal Neural Networks and
YOLO in image idenƟficaƟon, J. Phys.: Conf. Ser. 1453 012139.

7. Röbenack, Klaus (2020): Mobiler Eigenbauroboter mit Arduino, Auĩau und Programmierung
3., überarbeitete und erweiterte Auflage, page 15.

8. Roberts, James (2011): Enabling CollecƟve OperaƟon of Indoor Flying Robots, Chapters 1.2.3
and 1.2.4., University Thesis, Ecole Polytechnique Fédérale de Lausanne.

9. Rojas Castro, Dalia Marcela (2017): The RHIZOME architecture: a hybrid neurobehavioral
control architecture for autonomous vision-based indoor robot navigaƟon, Chapter 2,
University Thesis, Université de La Rochelle

10. Selcuk, Burcu; Serif, Tacha (2023): A Comparison of YOLOv5 and YOLOv8 in the Context of
Mobile UI DetecƟon In: Younas, M., Awan, I., Grønli, TM. (eds) Mobile Web and Intelligent
InformaƟon Systems. MobiWIS 2023. Lecture Notes in Computer Science, vol 13977. Springer,
Cham.

11. Shin, Dongeek; Patel, Shwetak; Chaudhry, Rizwan et al. (2021): Radar-Based Monitoring of a
Fall by a Person: WO 2021/118570 A1

12. Takuma, Sumiya; Yutaka, Matsubara; Miyuki, Nakano (2015): A Mobile Robot for Fall
DetecƟon for Elderly-Care, Procedia Computer Science 60, 870 –888

13. Veretennikov, Stanislav; Baskakov, Vladimir; Maltsev, Anton (2021): System and Method for
Smart Monitoring of Human Behavior and Anomaly DetecƟon: WO 2021/202274 A1

14. Xiu, Zhang; Xin, Zhang; Wei, Wang (2023): Intelligent InformaƟon Processing with Matlab,
Springer Verlag.

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

41

7.2 Online Sources
101. GlobalData (2021), Switzerland PopulaƟon DistribuƟon in 2021, by Age, accessed on

12/08/2023 hƩps://www.globaldata.com/data-insights/macroeconomic/switzerland-
populaƟon-distribuƟon-in-by-
age/#:~:text=The%20populaƟon%20of%20Switzerland%20reached,1.66%20million)%20o
f%20the%20populaƟon.

102. Shabrozshahab, Muhammad (2023): Yolo v8, www.medium.com, accessed on
12/08/2023, hƩps://medium.com/@muhammadshabrozshahab/yolo-v8-104f1375242c

103. Khandelwal, Renu (2022): Supervised, Unsupervised and Reinforcement Learning,
www.medium.com, accessed on 12/08/2023, hƩps://arshren.medium.com/supervised-
unsupervised-and-reinforcement-learning-245b59709f68

104. Malviya, Nikita (2023): Object DetecƟon Anchor Box VS Bounding Box, www.medium.com,
accessed on 12/08/2023, hƩps://medium.com/@nikitamalviya/object-detecƟon-anchor-
box-vs-bounding-box-bf1261f98f12

105. The RoboƟcs Back-End, Tutorial, Raspberry Pi Arduino Serial CommunicaƟon – Everything
You Need To Know, hƩps://roboƟcsbackend.com, accessed on 19/11/2023,
hƩps://roboƟcsbackend.com/raspberry-pi-arduino-serial-communicaƟon/

106. MacDonald, Gaven (2013): Membrane Matrix Keypad with the Raspberry Pi, accessed on
19/11/2023 hƩps://www.youtube.com/watch?v=yYnX5QodqQ4

107. Roboflow Enterprise (2023), Roboflow Docs, Raspberry Pi, accessed on 19/11/2023:
hƩps://docs.roboflow.com/deploy/raspberry-pi

108. The PyCoach (2023), How to Send Emails with Python [New Method 2023], accessed on
19/11/2023 hƩps://www.youtube.com/watch?v=g_j6ILT-X0k

109. Distrelec (2023), Primary device: Raspberry Pi 4B+, accessed on 06/01/2024:
hƩps://media.distrelec.com/Web/WebShopImages/landscape_large/87/fa/raspberry-pi-
b-plus-30001887fa.jpg

110. MakercreaƟvo (N/A): Arduino Uno R3, accessed on 06/01/2024:
hƩps://www.makercreaƟvo.com/store/producto/arduino-uno-r3/

111. CamDo (N/A): SanDisk Extreme Micro SD card, accessed on 06/01/2024: hƩps://cam-
do.com/products/sandisk-extreme-micro-sd-card-128gb-with-sd-adapter

112. RoboƟstan (N/A): Raspberry Pi Camera Modul V2, accessed on 06/01/2024:
hƩps://www.roboƟstan.com/raspberry-pi-camera-modul-camera-modul-for-raspberry-pi

113. Random Nerd Tutorials (N/A): Arduino Membrane Keypad, accessed on 06/01/2024:
hƩps://randomnerdtutorials.com/arduino-membrane-keypad-tutorial/

114. Digitec (N/A): Breadboard, accessed on 06/01/2024:
hƩps://www.digitec.ch/en/s1/product/dfrobot-breadboard-breadboard-half-size-
development-boards-kits-32988244

115. Amazon (N/A): VBOTCOR DC 3V-12V TT Dual ShaŌ Gear Motor, accessed on 06/01/2024:
hƩps://www.amazon.com/VBOTCOR-3V-12V-DUAL-SHAFT-
MOTOR/DP/B09MG3B12S?th=1

116. Amazon (N/A): Dual h-bridge Motor Drive Controller for Arduino Smart Car Robot Power
Motor, accessed on 06/01/2024: hƩps://www.amazon.com/H-Bridge-Controller-Arduino-
Stepper-Driver/dp/B06W5MNTSF

117. Farnell (N/A): Rubycon 25PK1000MEFC10X16, Aluminum ElectrolyƟc Capacitor, 1000uf,
25v, 20%, radial, accessed on 06/01/2024: hƩps://ch.farnell.com/en-
CH/rubycon/25pk1000mefc10x16/aluminum-electrolyƟc-capacitor/dp/2749339

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

42

118. Robocraze (N/A): What is Ultrasonic Sensor: Working Principle & ApplicaƟons, accessed on
06/01/2024: hƩps://robocraze.com/blogs/post/what-is-ultrasonic-sensor

119. Sparkfun (N/A): Diffused LED - RGB 10mm, accessed on 06/01/2024:
hƩps://www.sparkfun.com/products/11120

120. Reichelt (N/A): Metal oxide resistor, accessed on 06/01/2024: hƩps://cdn-
reichelt.de/bilder/web/arƟkel_ws/B400/!WID1W.jpg

121. AliExpress (N/A): Veroboard, accessed on 06/01/2024:
hƩps://de.aliexpress.com/item/32321476411.html?gatewayAdapt=glo2deu

122. Reichelt (N/A): Robot chassis kit for all ARDUINO systems, accessed on 06/01/2024:
hƩps://cdn-reichelt.de/bilder/web/arƟkel_ws/A300/ROBOT03-02.jpg

123. Reichelt (N/A): Raspberry Pi 30x30x10-mm fan for NESPi housing, accessed on 06/01/2024:
hƩps://cdn-reichelt.de/bilder/web/arƟkel_ws/A300/RPI_FAN_30X30_NEU_01.jpg

124. Digitec (N/A): USB cables, accessed on 06/01/2024:
hƩps://www.digitec.ch/en/s1/product/ugreen-usb-ausb-a-usb-cables-21185719

125. Digitec (N/A): USBC cables, accessed on 06/01/2024:
hƩps://www.digitec.ch/de/search?q=usb+c

126. Techtonics (N/A): USB Cable For Arduino UNO/MEGA (USB A to B) - 0.3m, accessed on
06/01/2024: hƩps://www.techtonics.in/usb-cable-for-arduino-uno-mega-usb-a-to-b

127. Grandado (N/A): cable M-F/M-M/F-F Jumper Breadboard, accessed on 06/01/2024:
hƩps://images.nexusapp.co/assets/e8/d1/f7/307223219.jpg

128. Digitec (N/A): Powerbank, accessed on 06/01/2024:
hƩps://www.digitec.ch/en/s1/product/aukey-pb-xd26-26800-mah-45-w-9650-wh-
powerbanks-8991738

129. Galaxus (N/A): Screws, nuts and washers, accessed on 06/01/2024:
hƩps://www.galaxus.ch/en/s4/product/agt-assortment-box-hexagon-bolts-nuts-
washers-hex-drivers-14458880

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

43

8 Appendix
8.1 Code

Structure of the folders and files:

On the raspberry:

On the Arduino:

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

44

8.1.1 main.py
#!/usr/bin/env python3
description:
This is the main file.
It controls the followin actions:
- registering which key is pressed on the 'membrane swich module 1pc'
- taking pictures and analyzing with a yolov8 model
- sending emails
- registering ultrasound inputs
- controlling motors

__author__ = "Victoria Hoffmann"
__email__ = "victoria_hoffmann@gmx.ch"

import (my own classes)
from control_final.keypad_final import *
from camera_final.image_recognition_final import *
from alerting_final.alert_email_final import *
from motion_final.ultrasound_final import *
from motion_final.movement_final import *
from indication_final.led_final import *

not my own
import RPi.GPIO as GPIO
from time import sleep

handling GPIO channel in use
GPIO.setmode(GPIO.BOARD)
GPIO.setwarnings(False)
GPIO.cleanup()
print("cleaned")

objects
m1 = Movement()
m1.setBack()

ultra = Ultrasound()

l1 = Led()
l1.white(1)

downloading model
key0 = Keypad()
value = key0.key_pressed()
if * is pressed the model is downloaded - else the model is not downloaded no image
recogniton can be done
if value == '*':
 c1 = Image_recognition()
 downloaded = True
else:
 downloaded = False

stopped = False
while (not stopped):
 l1.white(0.5)
 sleep(0.5)
 l1.white(0.5)

 key1 = Keypad()
 value = key1.key_pressed()
 if value == 1:
 if downloaded == True:
 notSent = True
 while (notSent):
 # taking pictures
 det = c1.image_analysis()
 if (det != 0):
 # indicating detection
 l1.red(1)
 sleep(1)
 l1.red(1)

 # sending email
 e1 = Alert_email('real')
 e1.send()

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

45

 notSent = False
 stopped = True
 for z in range(3):
 l1.turquoise(0.5)
 sleep(0.5)
 else:
 l1.green(1)
 for i in range(0, 2):
 toDo = ultra.direction() #
 m1.setup()
 m1.setBack()
 if toDo == 2:
 m1.curveRight(2)
 elif toDo == 3:
 m1.curveLeft(2)
 elif toDo == 4:
 m1.forwards(1)
 else:
 m1.backwards(1)

 m1.setBack()
 else:
 l1.purple(1)
 sleep(0.5)
 l1.purple(1)
 print("model hasn't been downloaded")

 elif value == 2:
 if downloaded == True:
 det = c1.image_analysis()
 if (det != 0):
 l1.red(0.5)
 sleep(0.5)
 l1.red(1)
 else:
 l1.green(1)
 else:
 l1.purple(1)
 sleep(0.5)
 l1.purple(1)
 print("model hasn't been downloaded")

 elif value == 3:
 e1 = Alert_email('test')
 e1.send()

 else:
 m1.setup()
 m1.setBack()

 if value == 4:
 m1.forwards(1)
 m1.setBack()
 elif value == 5:
 m1.backwards(1)
 m1.setBack()
 elif value == 6:
 m1.curveLeft(2)
 m1.setBack()
 elif value == 7:
 m1.curveRight(2)
 m1.setBack()

 else:
 stopped = True
 for z in range(3):
 l1.turquoise(0.5)
 sleep(0.5)

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

46

8.1.2 led_final.py
description:
In this class 8 states of an Led are defined by setting the pins as high or low
The color will be used to indicate what the main program is doing

__author__ = "Victoria Hoffmann"
__email__ = "victoria_hoffmann@gmx.ch"

import RPi.GPIO as GPIO
from time import sleep
from variables_final.var_final import *

class Led:
 # constructor
 def __init__(self):
 GPIO.setmode(GPIO.BOARD)
 self.redPin = situation_general['redPin']
 self.greenPin = situation_general['greenPin']
 self.bluePin = situation_general['bluePin']

 # setting pins as output
 def setup(self):
 GPIO.setmode(GPIO.BOARD)
 GPIO.setup(self.redPin, GPIO.OUT)
 GPIO.setup(self.greenPin, GPIO.OUT)
 GPIO.setup(self.bluePin, GPIO.OUT)

 def turnOff(self):
 self.setup()
 GPIO.output(self.redPin, GPIO.LOW)
 GPIO.output(self.greenPin, GPIO.LOW)
 GPIO.output(self.bluePin, GPIO.LOW)

 # all -> white
 def white(self, t):
 self.setup()
 GPIO.output(self.redPin, GPIO.HIGH)
 GPIO.output(self.greenPin, GPIO.HIGH)
 GPIO.output(self.bluePin, GPIO.HIGH)
 sleep(t)
 self.turnOff()

 # RGB
 def red(self, t):
 self.setup()
 GPIO.output(self.redPin, GPIO.HIGH)
 GPIO.output(self.greenPin, GPIO.LOW)
 GPIO.output(self.bluePin, GPIO.LOW)
 sleep(t)
 self.turnOff()

 def green(self, t):
 self.setup()
 GPIO.output(self.redPin, GPIO.LOW)
 GPIO.output(self.greenPin, GPIO.HIGH)
 GPIO.output(self.bluePin, GPIO.LOW)
 sleep(t)
 self.turnOff()

 def blue(self, t):
 self.setup()
 GPIO.output(self.redPin, GPIO.LOW)
 GPIO.output(self.greenPin, GPIO.LOW)
 GPIO.output(self.bluePin, GPIO.HIGH)
 sleep(t)
 self.turnOff()

 # mixed
 def lightGreen(self, t):
 self.setup()
 GPIO.output(self.redPin, GPIO.HIGH)
 GPIO.output(self.greenPin, GPIO.HIGH)
 GPIO.output(self.bluePin, GPIO.LOW)
 sleep(t)
 self.turnOff()

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

47

 def purple(self, t):
 self.setup()
 GPIO.output(self.redPin, GPIO.HIGH)
 GPIO.output(self.greenPin, GPIO.LOW)
 GPIO.output(self.bluePin, GPIO.HIGH)
 sleep(t)
 self.turnOff()

 def turquoise(self, t):
 self.setup()
 GPIO.output(self.redPin, GPIO.LOW)
 GPIO.output(self.greenPin, GPIO.HIGH)
 GPIO.output(self.bluePin, GPIO.HIGH)
 sleep(t)
 self.turnOff()

8.1.3 movement.py
description:
In this class the 4 motors are controlled (2x2 bc 2 are crosswired to eachother)
methods:
- __left (both directions)
- __right (both directions)
- forwards & backwards
- curves (__left & __right)

- sleep(x) for the duration of turning
- precaution before each swich of direction setBack
- GPIO cleanup after use of motors

__author__ = "Victoria Hoffmann"
__email__ = "victoria_hoffmann@gmx.ch"

both motors running at the same time
import RPi.GPIO as GPIO
from time import sleep
import serial
from variables_final.var_final import *

class Movement:

 def __init__(self):
 # set up --- global variables be aware of possible sideeffects
 GPIO.setmode(GPIO.BOARD)
 GPIO.cleanup()
 GPIO.setmode(GPIO.BOARD)

 self.__s = 95 # how much percent of potential speed should be used
 self.setup()
 self.speed1 = GPIO.PWM(self.__Motor1Ena, 100)
 self.speed2 = GPIO.PWM(self.__Motor2Ena, 100)

 def setup(self):
 GPIO.setmode(GPIO.BOARD)

 self.__Motor1Ena = situation_general['Motor1Ena']
 self.__Motor1A = situation_general['Motor1A']
 self.__Motor1B = situation_general['Motor1B']

 self.__Motor2Ena = situation_general['Motor2Ena']
 self.__Motor2A = situation_general['Motor2A']
 self.__Motor2B = situation_general['Motor2B']

 GPIO.setup(self.__Motor1Ena, GPIO.OUT)
 GPIO.setup(self.__Motor1A, GPIO.OUT)
 GPIO.setup(self.__Motor1B, GPIO.OUT)

 GPIO.setup(self.__Motor2Ena, GPIO.OUT)
 GPIO.setup(self.__Motor2A, GPIO.OUT)
 GPIO.setup(self.__Motor2B, GPIO.OUT)

 # cleaning

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

48

 def cleanup(self):
 GPIO.setmode(GPIO.BOARD)
 print("cleanup")
 GPIO.cleanup()

 def setBack(self):
 GPIO.setmode(GPIO.BOARD)
 print("setBack")
 GPIO.output(self.__Motor1Ena, GPIO.LOW)
 GPIO.output(self.__Motor1A, GPIO.LOW)
 GPIO.output(self.__Motor1B, GPIO.LOW)
 GPIO.output(self.__Motor2Ena, GPIO.LOW)
 GPIO.output(self.__Motor2A, GPIO.LOW)
 GPIO.output(self.__Motor2B, GPIO.LOW)
 self.sleep(1)

 # duration of movement
 def sleep(self, t):
 sleep(t)

 # __left
 def __left(self, minus_speed):
 GPIO.setmode(GPIO.BOARD)
 self.speed1.start(self.__s - minus_speed)
 GPIO.output(self.__Motor1Ena, GPIO.HIGH)
 GPIO.output(self.__Motor1A, GPIO.LOW)
 GPIO.output(self.__Motor1B, GPIO.HIGH)

 def __backwardsLeft(self, minus_speed):
 GPIO.setmode(GPIO.BOARD)
 self.speed1.start(self.__s - minus_speed)
 GPIO.output(self.__Motor1Ena, GPIO.HIGH)
 GPIO.output(self.__Motor1A, GPIO.HIGH)
 GPIO.output(self.__Motor1B, GPIO.LOW)

 # __right
 def __right(self, minus_speed):
 GPIO.setmode(GPIO.BOARD)
 self.speed2.start(self.__s - minus_speed)
 GPIO.output(self.__Motor2Ena, GPIO.HIGH)
 GPIO.output(self.__Motor2A, GPIO.LOW)
 GPIO.output(self.__Motor2B, GPIO.HIGH)

 def __backwardsRight(self, minus_speed):
 GPIO.setmode(GPIO.BOARD)
 self.speed2.start(self.__s - minus_speed)
 GPIO.output(self.__Motor2Ena, GPIO.HIGH)
 GPIO.output(self.__Motor2A, GPIO.HIGH)
 GPIO.output(self.__Motor2B, GPIO.LOW)

 # both
 def forwards(self, t):
 print("forwards")
 self.__left(0)
 self.__right(0)
 self.sleep(t)

 def backwards(self, t):
 print("backwards")
 self.__backwardsRight(0)
 self.__backwardsLeft(0)
 self.sleep(t)

 def stop(self, t):
 self.setBack()
 self.sleep(t)

 # curve
 def curveLeft(self, t):
 print("curveLeft")
 self.__right(0)
 self.sleep(t)

 def curveRight(self, t):
 print("curveRight")
 self.__left(0)
 self.sleep(t)

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

49

8.1.4 ultrasound_final.py [105]

description:
In this class the serial port of the arduino is read and displayed

front ultrasonic sensor connected to pins 2,3
right ultrasonic sensor connected to pins 6,7

100 -> backwards
200 -> turns right (wall disappeared)
300 -> turns left (wall in front)
400 -> forwards

__author__ = "Victoria Hoffmann"
__email__ = "victoria_hoffmann@gmx.ch"
__credits__ = "Robotics Back-End" #https://roboticsbackend.com/raspberry-pi-arduino-serial-
communication/

import serial, time

class Ultrasound:
 # constructor
 def __init__(self):
 # connection to arduino
 try:
 self.arduino = serial.Serial("/dev/ttyACM0", 9600, timeout=1)
 time.sleep(0.1) # wait for serial to open
 except:
 print("error occured when establishing connection")

 # helper method - evaluation of the direction
 def evaluation(self, __ansInt):
 # number from arduino to number that stands for direction
 __index = (__ansInt // 100) - 1
 self.__instructions[__index] += 1

 # if three times same direction
 if self.__instructions[__index] == 3:
 self.__notReached = False
 self.__toDo = __index + 1 # +1 because direction starts at 1 but list index at 0
 return

 # determining direction
 def direction(self):

 self.__instructions = [0, 0, 0, 0] # list of possible outcomes and how often appeared
 self.__notReached = True # threshold
 self.__toDo = 0
 if self.arduino.isOpen():
 print("{} connected!".format(self.arduino.port))

 while self.__notReached:
 if self.arduino.inWaiting() > 0:
 # reading serial port and formatting correctly
 __answer = self.arduino.readline()
 __answer = str(__answer)
 __answer2 = __answer.translate({ord(i): None for i in "br\\'\rn"})
 print(__answer2)

 # which direction most often -> evaluation
 __ansInt = int(__answer2) # str->int
 self.evaluation(__ansInt)

 # remove data after reading
 self.arduino.flushInput()

 return self.__toDo
 else:
 print("Error")
 return 0

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

50

8.1.5 keypad_final.py [106]
description:
In this class the button pressed on a 'Membrane Swich Module 1PC' is registered and
returned

-column pins as output: high
-row pins as input: high

--> set column output low (one at a time and cycle through them)
--> if button is pressed -> input low -> know which button

__author__ = "Victoria Hoffmann"
__email__ = "victoria_hoffmann@gmx.ch"
__credits__ = "Gaven MacDonald" # https://youtu.be/yYnX5QodqQ4?feature=shared

imports
from time import sleep
import RPi.GPIO as GPIO
from variables_final.var_final import *

class Keypad:
 # arrangement of buttons on membrane (class variable)
 __matrix = [[1, 2, 3, 'A'],
 [4, 5, 6, 'B'],
 [7, 8, 9, 'C'],
 ['*', 0, '#', 'D']]

 # constructor
 def __init__(self):

 GPIO.setmode(GPIO.BOARD)
 GPIO.cleanup() # to avoid conflicts if it was not closed properly
 GPIO.setmode(GPIO.BOARD)

 self.__col = situation_general['col']
 self.__row = situation_general['row']

 # coloumn as output
 for j in range(4):
 GPIO.setup(self.__col[j], GPIO.OUT)
 GPIO.output(self.__col[j], 1)

 # row as input
 for i in range(4):
 GPIO.setup(self.__row[i], GPIO.IN, pull_up_down=GPIO.PUD_UP)

 self.__not_pressed = True

 # determin which key pressed
 def key_pressed(self):
 while (self.__not_pressed):
 for j in range(4):
 GPIO.output(self.__col[j], 0) # cycling through setting output coloumn as low

 for i in range(4):
 if GPIO.input(self.__row[i]) == 0:
 __value = Keypad.__matrix[i][j]
 print("key pressed:" + str(__value))
 while (GPIO.input(self.__row[i]) == 0):
 pass

 sleep(0.4)
 self.__not_pressed = False
 break

 GPIO.output(self.__col[j], 1)

 GPIO.cleanup()
 return (__value)

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

51

8.1.6 image_recogniƟon_final.py [107]
description:
In this class a model is used to detect if people are lying on the ground.
A picture is taken (3x)
If a person (on the ground) is detected the image is saved(person indicated with a
colored frame)

model:
3325 images were annotated with Roboflow
Yolov8 was used to train the model
-mAP: 89.7%
-precision: 98.8%
-recall: 86.4%

model citation
@misc{
matura2_self.dataset,
title = { Matura2 self.dataset },
type = { Open Source self.dataset },
author = { MNG },
howpublished = { \url{ https://universe.roboflow.com/mng-7rqvv/matura2 } },
url = { https://universe.roboflow.com/mng-7rqvv/matura2 },

journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2023 },
month = { sep },
note = { visited on 2023-11-27 },
}

__author__ = "Victoria Hoffmann"
__email__ = "victoria_hoffmann@gmx.ch"
__credits__ = "Roboflow" # https://docs.roboflow.com/deploy/raspberry-pi

import
import os
import matplotlib.pyplot as plt
import cv2
from roboflow import Roboflow
import time
import shutil
from variables_final.p_key_final import *

class Image_recognition:
 # class variable where all the documents are
 __folder = '/home/victoria/virt/robot_final/alerting_final/documents_email'

 # constructor
 def __init__(self):

 # accessing my roboflow self.model
 self.rf = Roboflow(api_key=my_dictionary['api_rob'])
 self.project = self.rf.workspace("mng-7rqvv").project("matura2")
 self.dataset = self.project.version(1).download("yolov8")
 self.model = self.project.version("1").model
 self.model.confidence = 40
 self.model.overlap = 20

 def __remove_doc(self, path):
 if os.path.exists(path):
 os.remove(path)

 def image_analysis(self):
 __det = 0
 # creating or overwriting textfile
 __file_path = os.path.join(Image_recognition.__folder,
'textfile_recognition/prediction_precision.txt')
 f = open(__file_path, "w")
 f.close()

 # picture taking and analyzing repeated 3 times
 for i in range(1, 4): # 1,2,3 chosen to be easy to read

 __neutral_path = os.path.join(Image_recognition.__folder, "orig" + str(i) +
".jpg")

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

52

 os.system("libcamera-jpeg -o {}".format(__neutral_path)) # taking picture

 # future location of img
 __output_path = os.path.join(Image_recognition.__folder, "recognized",
"prediction" + str(i) + ".jpg")
 __alternat_path = os.path.join(Image_recognition.__folder, "not_recognized",
 "no_prediction" + str(i) + ".jpg")

 # try except bc no prediction can be made if there is no image
 try:
 prediction = self.model.predict(__neutral_path) # letting self.model predict
 except:
 # append to textfile
 f = open(__file_path, "a")
 f.write("Image " + str(i) + ":\n\tNo image and therefore no prediction. \n")
 f.close()

 # maintenance routine
 print("no image -> no prediction")

 # deleting previous file at this location
 self.__remove_doc(__output_path)
 self.__remove_doc(__alternat_path)

 # skipping this iteration
 continue

 __objects_detected = len(prediction.predictions) > 0 # Object detected and
__model.confidence>=40

 if __objects_detected:
 # append to text file
 f = open(__file_path, "a")
 f.write("Image " + str(i) + ":\n\tObjects detected! \n")
 f.write(str(prediction))
 f.close()
 __det += 1
 # saving image (with prediction) to location
 prediction.save(__output_path)

 # deleting previous file at this location
 self.__remove_doc(__alternat_path)
 self.__remove_doc(__neutral_path)

 print("obj. det.")

 else:
 # append to text file
 f = open(__file_path, "a")
 f.write("Image " + str(i) + ":\n\tNo objects detected. \n")
 f.close()

 # deleting previous file at this location
 self.__remove_doc(__output_path)

 # for maintenance routine
 shutil.move(__neutral_path, __alternat_path)

 print("No obj. det.")

 time.sleep(2)
 return __det

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

53

8.1.7 alert_email_final.py [108]
description:
In this class an e-mail is sent with the image(s) of the person that has fallen
(indicated with colored frame)
In addition the confidence level is appened to the body (plain text)

__author__ = "Victoria Hoffmann"
__email__ = "victoria_hoffmann@gmx.ch"
__credits__ = "The PyCoach" # https://youtu.be/g_j6ILT-X0k?feature=shared

import
import smtplib
import ssl
from email.message import EmailMessage
from email.mime.image import MIMEImage
from email.mime.text import MIMEText
from variables_final.p_key_final import *
from variables_final.var_final import *
import os

class Alert_email:
 # variables (same for every object)
 __email_sender = 'raspberr.pi4@gmail.com'
 __email_password = my_dictionary['email_aut']

 # constructor
 def __init__(self, situation):

 # situation
 if situation == 'real':
 dictionary = situation_real
 else:
 dictionary = situation_test

 self.situation = dictionary['situation']
 self.email_receiver = dictionary['email_receiver']
 self.subject = dictionary['subject']
 self.body = dictionary['body']

 # object created
 self.em = EmailMessage()
 self.em['From'] = Alert_email.__email_sender
 self.em['To'] = self.email_receiver
 self.em['Subject'] = self.subject
 self.em.set_content(self.body)

 def __attach_images(self, image_path, i, a):
 # if an image exits at that location

 if (os.path.exists(image_path)):
 with open(image_path, 'rb') as image_file:
 self.image_data = image_file.read()
 self.image = MIMEImage(self.image_data, name=a + 'prediction' + str(i) +
'.jpg')
 self.em.add_attachment(self.image)

 def send(self):
 # attach at most 3 images
 for i in range(1, 4):
 # detected, always attached
 image_path_pred =
'/home/victoria/virt/robot_final/alerting_final/documents_email/recognized/prediction' + str(
 i) + '.jpg'
 self.__attach_images(image_path_pred, i, "a_")

 # attaches not detected in test runs but not in real
 if self.situation != 'real':
 # not detected
 image_path_no_pred =
'/home/victoria/virt/robot_final/alerting_final/documents_email/not_recognized/no_prediction'
+ str(
 i) + '.jpg'
 self.__attach_images(image_path_no_pred, i, "no_")

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

54

 # attach at most 1 text file, always attached
 self.file_path =
'/home/victoria/virt/robot_final/alerting_final/documents_email/textfile_recognition/predictio
n_precision.txt'
 if (os.path.exists(self.file_path)): # if a text file exits at that location
 with open(self.file_path, 'r') as text_file:
 self.text_data = text_file.read()
 self.text_message = MIMEText(self.text_data)
 self.em.attach(self.text_message)

 __context = ssl.create_default_context() # more security

 # loging into server and sending email
 with smtplib.SMTP_SSL('smtp.gmail.com', 465, context=__context) as smtp:
 smtp.login(Alert_email.__email_sender, Alert_email.__email_password)
 smtp.sendmail(Alert_email.__email_sender, self.email_receiver,
self.em.as_string())

 # for maintenance routine
 print('email sent')

8.1.8 p_key_final.py
passwords
__author__ = "Victoria Hoffmann"
__email__ = "victoria_hoffmann@gmx.ch"

my_dictionary = {
 # Roboflow Model
 'api_rob': '********************',

 # email login
 'email_aut': '**** **** **** ****'
}

8.1.9 var_final.py
dictionaries for different situations
__author__ = "Victoria Hoffmann"
__email__ = "victoria_hoffmann@gmx.ch"

situation_real = {
 'situation': 'real',
 'email_receiver': 'vifeho04@gmail.com',
 'subject': 'ALERT - FALL DETECTED',
 'body': """
 This is an alert!

 A person on the ground has been detected!
 Enclosed are the images along with the corresponding confidence level.
 Your immediate review and prompt follow-up actions are required instantaneously.

 Sincerely,
 ~robot

 """

}

situation_test = {
 'situation': 'test',
 'email_receiver': 'raspberr.pi4@gmail.com',
 'subject': 'e-mail maintenance (test)',
 'body': """
 This e-mail is intended for maintenance purposes only.

 It includes the documents from three folders:
 - recognized: pictures where an object has been identified
 - not_recognized: pictures where no object has been identified
 - textfile_recognition: a textfile with information about the pictures... i.e.
confidence

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

55

 Sincerely,
 ~robot

 """

}

situation_general = {
 # keypad
 'col': [32, 36, 38, 40],
 'row': [12, 16, 22, 18],

 # led
 'redPin': 37,
 'greenPin': 35,
 'bluePin': 7,

 # movement
 'Motor1Ena': 29,
 'Motor1A': 31,
 'Motor1B': 33,
 'Motor2Ena': 11,
 'Motor2A': 13,
 'Motor2B': 15,
}

8.1.10 ultrasound_2_direcƟon.ino
// In this program the distance between the ultrasound sensor and the nearest object are calculated via soundwaves
// The calculaƟon is made for 2 ultrasound sensors
// Based on the calculaƟon the direcƟon in which the robot should move is decided
// Numbers stand for the different direcƟons for them to be easily converted back to integers by the Raspberry Pi
// 100 -> stop
// 200 -> right
// 300 -> leŌ
// 400 -> forward
//
// author: Victoria Hoffmann
// email: victoria_hoffmann@gmx.ch

// iniƟalizing pins
// right
int triR = 7; //trigger-pin
int echR = 6; // echo-pin
long tR = 0; // Ɵme (from emiƫng Ɵll receiving)
long dR = 0; // distance

//forward
int triF = 2; //trigger-pin
int echF = 3; // echo-pin
long tF = 0; // Ɵme (from emiƫng Ɵll receiving)
long dF = 0; // distance

int acƟon=0;

// setup
void setup()
{
 Serial.begin (9600);
 pinMode(triR, OUTPUT); // Trigger-Pin is an output
 pinMode(echF, INPUT); // Echo-Pin is an input

 pinMode(triF, OUTPUT); // rigger-Pin is an output
 pinMode(echF, INPUT); // Echo-Pin is an input

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

56

}

void loop()
{
 //right
 //emiƫng soundwave
 digitalWrite(triR, LOW);
 delay[5];
 digitalWrite(triR, HIGH);
 delay[10];
 digitalWrite(triR, LOW);

 //calculaƟon
 tR = pulseIn(echR, HIGH);
 dR = (tR / 2) * 0.03432; // /2 bc only one way, *0.03432 -> speed of sound

 delay(1000);

 //forward
 //emiƫng soundwave
 digitalWrite(triF, LOW);
 delay[5];
 digitalWrite(triF, HIGH);
 delay[10];
 digitalWrite(triF, LOW);

 //calculaƟon
 tF = pulseIn(echF, HIGH);
 dF = (tF / 2) * 0.03432; // /2 bc only one way, *0.03432 -> speed of sound
 delay(1000);

 // deciding direcƟon which will be printed in serial port

 if (dR<=15 && dF<=15){ //back
 acƟon=100;
 }else{
 if (dR>40){ //has to turn right
 acƟon=200;
 }else if(dF<50){ // has to turn leŌ
 acƟon=300;
 }else{ // forward
 acƟon=400;
 }
 }
 Serial.println(acƟon);
}

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

57

8.2 Extensions
8.2.1 Language processing model

This language processing model is designed to differenƟate between situaƟons requiring a call for
immediate assistance and situaƟons where the person feels fine but an email should be sent
regardless.

Call:

1. ($determiners:d) ($body:b) ($verb-feeling:v) $negation:n $positive:p

- My leg is not okay

2. I ($verb-feeling:v) $negation:n $positive:p

- I am not healthy

3. (please) (I) ($verb-feeling:v) ($bad-adv:b) $verb-body:v2 ($bad-adv:b2)

- I continue to be severely pained

4. (please) (I) (have) $bad-adv:b ($verb-body:v) ($determiners:d) ($body:body)

- I have severely wounded my neck

5. $verb-body:v ($determiners:d) $body:b

- I dislocated my shoulder

7. ($determiners:d) $body:b (is) $verb-body:v

- My knee is throbbing

8. (please) (I) ($verb-help:v) ($determiners:d) $object-pos:o (please)

- Please I rely on an emergency service

9. $exclamations:ex

- Help me

10. (please) ($determiners:D) $body:b ($verb-feeling:v) ($bad-adv:b2)

- My body suffers

11. (please) (I) ($verb-help:v) ($determiners:d) $help:v2 (please)

- I require medical attention

12. (please) $verb-alerting:v ($determiners:d) ($object-pos:o) (please)

- Please notify my relatives

13. (I) (have) $verb-action:v ($bad-adv:b)

- I have collapsed

Message:

1. I ($verb-feeling:v) $positive:p

- I feel fine

2. ($determiners:d) ($body:b) ($verb-feeling:v) $positive:p

- My knee is okay

3. (please) (I) ($verb-feeling:v) ($bad-adv:b) $negation:n $verb-body:v2 ($bad-adv:b2)

- I feel no throbbing

4. (I) (have) $negation:n $verb-action:v ($bad-adv:b)

- I have not slipped badly

5. (please) $negation:n $verb-alerting:v ($determiners:d) ($object-pos:o) (please)

- Please don’t alert the paramedics

6. (please) (I) $negation:n ($verb-help:v) ($determiners:d) $help:v2 (please)

- I don’t require first aid

7. (please) ($determiners:D) $body:b (is) $negation:n ($verb-feeling:v) ($bad-adv:b2)

- My head doesn’t hurt badly

8. (please) (I) $negation:n ($verb-help:v) ($determiners:d) $object-pos:o (please)

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

58

- I don’t need nine one one

9. ($determiners:d) $body:b (is) $negation:n $verb-body:v

- My foot is not in pain

10. (I) $negation:n $verb-body:v ($determiners:d) $body:b

- I haven’t twisted my ancle

11. $negation:n $exclamations:e

- No need to worry

12. (please) (I) (have) $negation:n $bad-adv:b ($verb-body:v) ($determiners:d) ($body:body)

- I haven’t severely injured my head

13. (please) (I) $negation:n ($verb-feeling:v) ($bad-adv:b) $verb-body:v2 ($bad-adv:b2)

- I don’t feel injured

14. $negation:n

- Don’t

15. False alarm

- False alarm

Verb-alerting alarm, alert, call, communicate, dial, email, inform, message, notify,

phone, reach out to, ring, signal to, speak to, summon, telephone, text,

warn.

Verb-help call for, demand, depend on, desire, have to have, invoke for, need, rely

on, request, require, seek, want.

Verb-feeling

Verb-body ache, aches, aching, agonized, bad, bleed, bleeding, bleeds, break, broke,

broken, bruised, crushed, cut, damaged, disabled, dislocated, distressed,

dying, fractured, gave out, give out, gives out, handicapped, hit, hurt,

hurting, hurts, in agony, in discomfort, in distress, in pain, injured,

limping, miserable, numb, numbed, pained, paralyzed, pulled, scarred,

scraped, sensitive, sore, sprained, strained, suffering, swell, swells,

swollen, tear, tears, tender, throbbing, tore, torn, tortured, twist,

twisted, twists, wounded.

Verb-action am lying, am lying on the floor, am lying on the ground, collapsed,

fainted, fallen, fell, found myself on the floor, found myself on the

ground, lost balance, lost my balance, sagged, sank, sank to the floor,

sank to the ground, slipped, staggered, stumbled, toppled, toppled over,

tripped, tumbled.

Body

ankle, ankles, arm, arms, back, back of head, back of my head, body, bone,

chest, collarbone, ear, ears, elbow, elbows, eye, eyes, feet, finger,

fingers, foot, forearm, forearms, forehead, hand, hands, head, heel,

heels, hip, jaw, knee, knees, leg, legs, neck, nose, palm, palms, pelvis,

rib, ribcage, ribs, shin, shins, shoulder, shoulders, spine, tailbone,

temple, temples, tendon, tendons, thigh, thighs, thumb, thumbs, toe, toes,

upper arm, upper arms, wrist, wrists.

help
aid, assistance, bandage, bandages, checkup, evaluation, examination,

first aid, help, medical attention, medication, pain relief, rescue,

support, treatment.

object-pos
ambulance, anybody, anyone, caregiver, child, children, clinic, contact,

contacts, daughter, doctor, emergency contact, emergency services, friend,

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

59

healthcare provider, husband, neighbours, nine one one, paramedic,

paramedics, personal assistant, relative, relatives, rescue team,

somebody, someone, son, wife.

Exclamation
accident, emergency, fall, help me, injury, need to worry, oh no, pain,

please, urgency, worries, worry.

Determiners a, an, my, the.

Negation

barely, by no means, cannot, can't, did not, didn't, do not, does not,

doesn't, don't, hardly, has not, hasn't, have not, haven't, is not, isn't,

never, no, no way, none, not, not at all, not ever, not in any way, not

in the faintest, not in the least, not in the slightest, stop, under no

circumstance, wrong, wrongly.

Bad-adv
Awfully, badly, dreadfully, horribly, miserably, negatively, regrettably,

severely, terribly.

positive

all good, alright, awesome, brilliant, comfortable, contempt, content,

excellent, fabulous, fantastic, fine, fit, good, great, happy, healthy,

intact, marvellous, okay, optimal, perfect, safe, sound, splendid, steady,

superb, survived, terrific, unhurt, uninjured, undamaged, well, whole,

wonderful.

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

60

8.2.2 Autonomous phone control
description:
This program opens the connection to an Android phone, opens WhatsApp, and calls a contact.
However for other phones the location where the mouse has to go might be different.
Therefore the coordinates would have to be adapted

with this code snippet the wanted location of the mouse can be determined
while True:
print(pg.position())
time.sleep(1)

__author__ = "Victoria Hoffmann"
__email__ = "victoria_hoffmann@gmx.ch"

import pyautogui as pg
from pynput.mouse import Button, Controller
import time
mouse = Controller

def click_sleep(x, y, sleep_time):
 pg.click(x, y)
 time.sleep(sleep_time)

def swipe_pin():
 pg.click(500, 600)
 time.sleep(1)
 pg.mouseDown(button='left')
 pg.move(0, -200, 0.1)
 pg.mouseUp(500, 200, button='left')

def enter_password():
 coordinates = [(440, 530), (440, 460), (500, 400), (580, 460), (580, 530), (440, 400)]
 for coord in coordinates:
 pg.click(coord[0], coord[1])
 time.sleep(2)

open phone connection
click_sleep(9, 16,1) #click menue(raspberry)
click_sleep(31, 240,1) #system tools
click_sleep(250, 237, 5) # scrcpy

Swipe to enter pin
swipe_pin()

Enter password
enter_password()

The second part of the code
click_sleep(510, 710,1) #click menue on phone
click_sleep(460, 650,1)#whatsapp
click_sleep(600, 145, 2) # search contact
pg.typewrite("Mama") # enter contact name
click_sleep(460, 200,1) # click on contact
click_sleep(555, 145,1) # call

8.3 Materials
8.3.1 SoŌware
- Machine learning soŌware library: OpenCV
- Python library for modificaƟon of arrays: Numpy
- Extension of OpenCV: ImuƟls
- OS: bookworm (not buster or bullseye)
- AnnotaƟng images: Roboflow
- Neural network: yolo-v8
- Language: Python, and Arduino

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

61

8.3.2 Hardware

Primary device: Raspberry Pi
4B+

Subordinate device: Arduino Uno

MicroSD card (…GB)

Figure 31: Raspberry Pi 4B+,
copied from [109]

Figure 32: Arduino Uno, copied
from [110]

Figure 33: MicroSD Card,
copied from [111]

Raspberry pi camera version
2.1

Switch Membrane Module 1PC Breadboard

Figure 34: Raspberry pi
camera version 2.1, copied
from [112]

Figure 35: Membrane Switch
Module 1PC, copied from [113]

Figure 36: Breadboard,
copied from [114]

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

62

4 DC Motors+4 Ɵres H-Bridge Capacitor

Figure 37: 3V-12V DC Motors
+ corresponding wheels
copied from [115]

Figure 38: H-Bridge, copied from
[116]

Figure 39: 1000mF 25V
capacitor, copied from [117]

Ultrasound sensor (x2)

RGB - LED

Resistors

Figure 40: Ultrasound sensor,
copied from [118]

Figure 41: RGB LED, copied from
[119]

Figure 42: Resistors, copied
from [120]

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

63

Soldering board Robot Chassis Exhaust fan

Figure 43: Board for own
circuit copied from [121]

Figure 44: Robot Chassis, copied
from [122]

Figure 45: Exhaust fan,
copied from [123]

USB cable USBc cable Arduino cable

Figure 46: USB cable, copied
from [124]

Figure 47: USBc cable, copied from
[125]

Figure 48: Arduino cable
copied FROM [126]

MM, MF, FF cables power bank Screws

Figure 49: MM, MF, FF
cables copied from [127]

Figure 50: power bank copied from
[128]

Figure 51: screws copied
from [129]

Autonomous robot for fall detecƟon and emergency alerts Victoria Hoffmann

64

DeclaraƟon of independence

Die Unterzeichnete bestäƟgt mit UnterschriŌ, dass die Arbeit selbständig verfasst und in schriŌliche
Form gebracht worden ist, dass sich die Mitwirkung anderer Personen auf Beratung und
Korrekturlesen beschränkt hat und dass alle verwendeten Unterlagen und Gewährspersonen
aufgeführt sind.

Autorin: Victoria Hoffmann

Herrliberg, 8. Januar 2024 Victoria Hoffmann

