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Abstract
In this project we reverse-engineered the linear code known as the ISBN (international
standrad book number) code. We searched for a generator matrix and parity-check matrix
experimentally and used them to deduce certain properties of the ISBN code.
Next we reverse-engineered the non-linear IBAN (international bank account number)
code. We came up with a decoding scheme utilizing p-adic numbers and used this very
scheme to prove our theorem that the IBAN code is a single error detecting code.
Finally we also constructed a hash-function. In order to do so it was necessary to also
construct a pseudo-random generator which was then combined with the pseudo-random
function by Goldreich, Goldwasser and Micali, to get the desired result. We did not prove
this or find experimental evidence to support a claim of first or second pre-image resis-
tance, we did however test some known attacks.

The project is structured as follows. We begin with first examples of the two fields (cod-
ing theory and cryptography) in chapter one and some essential linear algebra results in
chapter two. Next, we will introduce and study linear coding theory and put focus on
BCH codes in chapter three. Chapter four is devoted to mathematical cryptography. In
chapter five the reader will find the reverse-engineering of the ISBN code as well as addi-
tional information on its specifications. The sixth chapter is dedicated to explaining the
IBAN code, why a non-linear code was a reasonable choice and how p-adic numbers can
be utilized to let anyone decode an IBAN in a single glance. The final chapter is left to
the hash function made by the author of this paper using the PRG’s, PRF’s and hash
function knowledge given in chapter four.
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1. Introduction.

1.1. Cryptography and Coding Theory.
A common misconception is that coding theory is cryptography. Coding theory solves the
problem of error correction and error detection over noisy channels. We explain this in
greater detail below.
In communication information comes from a source and goes to a receiver through a
medium called a channel. A channel could be a radio, telephone or in live conversation
simply space. Channels which output every input exactly as it came in are called noise-
less. These are quite rare. Noise distorts messages being sent over a channel and produces
errors. To clarify what noise is we give some examples: noise in the radio is known as
static, over the telephone it is sometimes caused by lightning and in face to face speech it
can be understood as literal noise (loud drilling) that makes it harder for the recipient to
understand the message.
Coding theory is used to detect and sometimes also correct errors resulting from noise.
Cryptography on the other hand is a tool to disguise a message (often by complex mathe-
matical procedures) such that it is unintelligible to unwanted readers. Here we also send a
message from a source over a channel to a recipient, however the noise aspect is neglected
and we focus on the channel being secure or insecure and how one can protect messages
over such channels.

1.2. A First Example in Coding Theory.
One has to navigate their way through the maze, but a second party is at a vantage point
above the maze and can see the way out. The only issue is that the communication is over
a noisy channel. Some rules are set up by both parties:
00 means go backwards.
11 means go forward.
10 means go right.
01 means go left.
Due to the noise,if the message 11 (a forward prompt) is sent, the message 01 (a left
prompt) might be received. Depending on the frequency of errors, navigation might be-
come difficult.
Alice (at the vantage point) and Bob (in the maze) use the following code instead:
0000 means forward.
1111 means backwards.
1010 means right.
0101 means left.
If a single error occurs Bob can detect it and ask for re-transmission. This holds because
the code words differ to one another in at least 2 digits. We call this code a single-error
detecting code.

1.3. A First Example in Cryptography.
Let us keep the same maze setup as in the previous example. However this time imagine a
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noiseless, insecure channel. Also imagine that Alice and Bob are in a race with Eve, who
is also in the maze. Eve doesn’t have anyone to guide her; what she does have though is
access to the channel. Thus Alice and Bob must communicate using a secret cipher. They
decide to use the same code as above. Eve knows this code and assumes you are using it.
What Eve doesn’t know is that Alice and Bob have agreed upon a secret cipher in which
one must read every 0 as a 1 and every 1 as a 0.
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2. Preliminary Results.
This chapter begins with the presentation of some standard Algebra results that we use
later on.
Both cryptography and coding theory often use finite fields and vector spaces over finite
fields. This is why in the following chapter we will also explain what they are.
Finally we give some classical definitions and theorems which can be found in any book
on Linear Algebra such as [Bos14].

2.1. Algebra Results.

Theorem 2.1. (The Euclidean Algorithm) [HPS06]
Let a and b be positive integers. Assume b ̸= 0 and a ≥ b. The following algorithm
computes gcd(a, b) in a finite number of steps.

(1) Let r0 = a and r1 = b.
(2) Set i = 1
(3) Perform division with rest to obtain ri−1 = qiri + ri+1.
(4) If the remainder ri+1 = 0, then ri = gcd(a, b) and the algorithm terminates.
(5) Otherwise, ri+1 > 0, so set i = i+ 1 and go back to (3).

The division step is executed at most 2 log2(b) + 2 times.

Proof.
We only give the proof of the efficiency since we assume the reader is already familiar with
the Euclidean algorithm.

Claim: ri+2 ≤
1

2
ri ∀i ∈ N.

Case 1: ri+1 <
1
2ri

We know the values are strictly decreasing, so it follows that

ri+2 <
1

2
ri.

Case 2: ri+1 >
1
2ri

In this case we have that
ri = ri+1 + ri+2,

and thus

ri+2 = ri − ri+1 < ri −
1

2
ri =

1

2
ri.

Using this inequality we find that

r2k+1 <
1

2
r2k−1 < ... <

1

2k
r1 =

1

2k
b.

If 2k ≥ b, then r2k+1 equals 0 and the algorithm terminates.
One can see that the Euclidean algorithm terminates in at most 2k iterations. Choose the
smallest k, such that 2k ≥ b ≥ 2k−1.

N ≤ 2k = 2(k − 1) + 2 < 2 log2(b) + 2,

where N is the number of iterations. □
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Theorem 2.2. (Extended Euclidean Algorithm) [HPS06]
Given four integers a = r0, b = r1, x, y one can write the gcd(a, b) as the sum of
ax+ by = gcd(a, b).

We give our own proof.

Proof.
From the Euclidean algorithm one takes that for some i

gcd(a, b) = ri+1 (1)

= ri−1 − qi · ri (2)

= ri−1 − qi · (ri−2 − qi−1ri− 1) (3)

= −qiri−2 + (1− qiqi−1)ri−1. (4)

It follows that
r0x+ r1y = gcd(a, b),

for some x, y.
□

Theorem 2.3. (Fermat’s little theorem) [HPS06]
Suppose p is prime. If p ∤ a, it holds that ap−1 ≡ 1 (mod p).

Before giving the proof we look at a helpful lemma.

Lemma 2.4.
Suppose p is prime. If p ∤ a, then {a, 2a, ..., (p − 1)a} are all distinct non-zero numbers
modulo p.

Proof. Take two number ja and ka from the list.
If ja ≡ ka,then(j − k)a ≡ 0,it follows thatj − k ≡ 0and thusja ≡ ka.
But all numbers on the list are non-zero since 1, ..., p−1 are not divisors of p and p ∤ a. □

Now back to the proof of Fermat’s little theorem:

Proof.
One can observe that a, 2a, ..., (p − 1)a (mod p) is 1, 2, ..., (p − 1) (mod p) in a different
order. It follows that

a · 2a · ... · (p− 1)a ≡ 1 · 2 · ... · (p− 1) (mod p),

giving us
ap−1 · (p− 1)! ≡ (p− 1)! (mod p).

As both are non-zero and we are in a field as p is prime we may conclude that by multi-
plication with the inverse of (p− 1)! on both sides of the equation we get

=⇒ ap−1 ≡ 1 (mod p).

□
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2.2. Vector Spaces over Finite Fields.

Definition 2.5. (Fields)
A field is a set F with two inner-operations + : F×F → F and · : F×F → F such that the
following properties are satisfied:

(1) (a+ b) + c = a+ (b+ c) for all a, b, c ∈ F. (additive associativity)
(2) There exists a neutral element eadd in F such that eadd + a = a for all a ∈ F.
(3) Every element a ∈ F has an inverse b ∈ F such that a+ b = e.
(4) a+ b = b+ a for all a, b ∈ F. (additive commutativity)
(5) (a · b) · c = a · (b · c) for all a, b, c ∈ F.
(6) There exists a neutral element emult ∈ F such that a · emult = a for all a ∈ F.
(7) Every element a ∈ F\{0} has an inverse such that a · b = 1.
(8) a · b = b · a for all a, b ∈ F. (multiplicative commutativity)
(9) a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c for all a, b, c ∈ F. (distributivity)
(10) 1 ̸= 0

This defines any field. Some examples would be C, the complex numbers (1, 1 + 3i,√
2i, ...); Q, the rational numbers (0, 15 ,

1
2 , 1,

4
3 ...) or R, the real numbers. We are however

interested in finite fields. The following definition will give us a tighter grasp on them.

Definition 2.6. (Finite Fields)
A finite field or Galois field is a field which has a finite number of elements, this number
being called the order of the field.

Definition 2.7.
Let m be a fixed integer. Two integers a, b are said to be congruent modulo m, symbolized

a ≡ b (mod m)

if a− b is divisible by m.

Example 2.8.

1 ≡ −1 (mod 2) 49 ≡ 0 (mod 7) 5 ̸≡ 6 (mod 8)

Modulo calculations are used in finite fields. An easy example is F7, also written as Z/7Z.
It consists of the elements {0, 1, 2, 3, 4, 5, 6}. We calculate everything modulo 7.

Lemma 2.9.
A Field F satisfies the condition that for a, b ∈ F , a · b = 0 if and only if a or b are equal
to zero.

We give our own proof.

Proof.
Assume a, b ∈ F ⋆. Then recalling that multiplication over a field is abelian we get

1 = aa−1bb−1 = aba−1b−1 = 0a−1b−1 = 0,

which leads to a contradiction to the assumption that F is a field, as in a field 1 ̸= 0. □
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Lemma 2.10.
Finite fields of the form Z/mZ, where m ∈ Z require that m is a prime number.

We give our own proof.

Proof.
If m is not prime we can choose a, b such that ab = m, where a ̸≡ 0 (mod m) and b ̸≡ 0
(mod m). We observe that ab can be equivalent to zero modulo m. Using Lemma 2.9 we
may conclude that Z/mZ is not a field. □

Definition 2.11.
Let R be a ring and ϕ be the unique ring homomorphism: Z → R.
The characteristic of R is the natural number n, such that the ker(ϕ) = nZ.

Notation 2.12. We denote the characteristic of a ring R as char(R).

Remark 2.13.
Let L and K be two fields and let K ⊂ L. Then char(K)=char(L).
We omit the proof.

Definition 2.14. Prime Fields
The smallest subfield of a field K is called the prime field of K.

Lemma 2.15.
Let K be a field. Then one of the following holds.

(1) char(K)=0 and the prime field of K is isomorphic to Q.
(2) char(K)=p, a prime and the prime field of K is isomorphic to Z/pZ.

Proof.

(1) Let char(K)=0.
Consider the ring homomorphism ϕ : Z → K, with Z = Z/ kerϕ ≃ Im(ϕ). It
follows that K contains a subring, lets call it SR, isomorphic to Z. As K is a field
it contains Frac(SR) (field of fractions of SR). Thus Q ≃ Frac(SR) ⊂ K. This
implies that Q is a prime field. If F ⊆ Q is a subfield of Q, then char(F ) = 0
meaning that F ′ contains a subring isomorphic to Q. It follows that F = Q.

(2) Let char(K)=n > 0.
Once more we consider the ring homomorphism ϕ : Z → K. We know that
Im(ϕ) ≃ Z/nZ, so ϕ(Z) ⊂ K. It follows that for any x, y ∈ ϕ(Z)

x · y = 0 if and only if y = 0 or x = 0.

Recalling Lemma 2.10 this means that n must be prime and ϕ(Z) ≃ Z/pZ.
□

Theorem 2.16. Galois Fields
Let q > 0 be an integer. Then there exists a field with q elements if and only if q = pn for
a prime p and an integer n ≥ 1.
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Proof.
We first prove the existence of a field with q elements assuming that q = pn for a prime p
and an integer n ≥ 1.

• If n = 1 then we cane take Fp to equal Z/pZ.
To prove that Z/pZ is indeed a field we show the existence of an inverse for every
non-zero element, all other field axioms can be checked and hold true.
Let a ∈ Z/pZ. Then by Lemma 2.4 it follows that {a, 2a, ..., (p− 1)a} all distinct
non-zero numbers. As there are only p − 1 non-zero in Z/pZ we have that some
xa = 1 for an x ∈ {1, ..., p− 1}.

• If n ≥ 2, consider the polynomial f = T q − T ∈ Fp[T ].
Let F be the smallest field containing all roots of f . One can recall Fermat’s little
Theorem and observe that Fp ⊂ F . Using Remark 2.13 we know that char(L)=p.
Next, consider L ⊂ F , the set of the roots of f :

L = {a ∈ F |aq = a}
We prove that L is a subfield of F which implies, by the assumption that F is the
smallest field containing L, that F = L.

– 1 ∈ L, as 1q − 1 = 0.
– Let a, b ∈ L, then (−a)q = (−1)qaq = (−1)qa. If q is odd then (−a)q = −a

and if q is even then p = 2 and 2 · x = 0 for all x ∈ F . Thus −1 = 1 and
(−a)q = a = −a.

–

(
1
a

)q

= 1
aq = 1

a ∈ L.

– (a+ b)q =
∑q

k=0

(
q
k

)
akbp−k = aq + bq = a+ b ∈ L, as p |

(
pn

k

)
for all k except

k = q and k = 0. (Recall that char(L)=p.
– (ab)q = aqbq = ab ∈ L

Hence L ⊂ F is a subfield and L = F . The set L consists of q < ∞ elements. It
is clear that |L| ≤ deg(f) = q and using the formal derivative one can show that
T q − T ∈ Fp[T ] has no repeat roots. And so we conclude that there exists a field
with q elements for q = pn.

Next, we show that if Fq is a field with q elements, then q must be a prime power.
As Fq is a finite field char(Fq) cannot equal zero as this would imply that Q is contained
in Fq contradicting the assumption that Fq has exactly q elements. Thus by Lemma 2.15
it holds that char(L)=p for p a prime.
It follows that Fp ⊂ Fq and that Fq can be viewed as an Fp-vector space of finite dimension
n. Hence Fq consists of exactly pn elements and q = pn. (Note: vectorspaces and dimension
are defined below.) □

After having extensively looked at finite fields we now introduce vector spaces, first in
general and then over finite fields.
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Definition 2.17. (Vector Spaces) (p.34, [Bos14])
Let F be a field. A vector space over F is a set with an inner operation V × V →
V, (a, b) 7→ a+ b called addition and an outer operation F × V → V, (λ, a) 7→ λ · v called
scalar multiplication such that the following holds:

(1) Addition over V fulfills commutivity and associativity, the existence of a neutral
and an inverse element.

(2) (λ+ µ)a = λa+ µa for all λ, µ ∈ F and a ∈ V .
(3) λ(a+ b) = λa+ λb for all λ ∈ F and a, b ∈ V .
(4) 1 · a = a for all a ∈ V .

Notation 2.18.
We call the elements of a vector space vectors.

Remark 2.19. Vector spaces over finite fields
Vector spaces over finite field work completely analogous to general vector spaces defined
above. The only difference is that the field F is finite.

Definition 2.20. (Span)
The span of set of vectors {v1, ..., vn|vi ∈ V } is the set

S = {
n∑

i=1

λivi},

where λi ∈ K for all i = 1, ..., n.

Notice that if V is the span of v1, v2, v3 then V is also the span of v1, v2, v3, v4 if v4 ∈ V
that is to say if v4 = λ1v1 + λ2v2 + λ3v3.

Definition 2.21. (Linear dependence)
A set of vectors {v1, ..., vn} are linearly independent if λ1v1 + ... + λnvn = 0 only holds
when all coefficients are zero.

Definition 2.22. (Basis)
A set B = {v1, ..., vn} is a basis of V if {v1, ..., vn} span V and are linearly independent.

Lemma 2.23.
Let V be a K-vector space, B = {v1, ..., vn} a basis of V and v = vi − vj. Then B̂ =
{v1, ..., vi−1, v, vi+1, ..., vn} is also a basis of V .
We give our own proof.

Proof.
To prove the statement we must show that

(1) the vectors in B̂ are linearly independent,

(2) the vectors in B̂ are span V .

(1) By assumption we know that for µ ∈ K

µ1v1 + ...+ µi−1vi−1 + µvv + µi+1vi+1 + ...+ µnvn (5)
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= µ1v1 + ...+ µvvi − µvvj + ...+ µjvj + ...+ µnvn (6)

= µ1v1 + ...+ µvvi + ...+ (µj − µv)vj + ...+ µnvn. (7)

By assumption v1, ..., vn are linearly independent. This means that for λ ∈ K

λ1v1 + ...+ λnvn = 0 ⇐⇒ λk = 0 ∀k.

It follows that all the coefficients in (3) must equal zero, specifically µv and (µj−µv)
in order for (3) to equal zero.

(2) By assumption any vector a ∈ V can be written as

a = λ1v1 + ...+ λnvn.

We observe that since v = vi − vj that same vector a can be written as

a = λ1v1 + ...+ λiv + ...+ (λi + λj)vj + ...+ λnvn.

It follows that B̂ spans V .

□

From Lemma 2.23 it follows that bases are not unique.

Definition 2.24. (Dimensions)
The dimension of V is the minimum number of vectors that span V.

Remark 2.25.
One can show that it is equivalent to define the dimension as the cardinality of any basis.

Definition 2.26. (Subspaces)
We define a linear subspace C of a vector space V to be a non-empty subset of V that is
closed under addition and scalar multiplication of V .

Theorem 2.27.
Suppose V is an n-dimensional vector space with basis v1, ..., vn. Then every element of V
can be expressed uniquely by a linear combination of the basis vectors.

Proof.
Since the basis vectors are linearly independent it follows that

λ1v1 + ...+ λnvn = 0

if and only if all coefficients λi for all i=1,...,n equal 0.
So if λ1v1+ ...+λnvn = µ1v1+ ...+µnvn it follows that

∑n
i=1(λi−µi)vi = 0, which means

λi = µi for all i = 1, ..., n.
□

Notation 2.28.
When writing v ∈ V as the sum of all the basis vectors v =

∑n
i=1 λivi the coefficients λi

are also known as the vectors coordinates.
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Definition 2.29. (Determinant)
Let K-vectorspace V = Matn×n(K). Then the function det : V → K. We define the
determinant of an n× n matrix A as

det(A) =
∑
σ∈Sn

Sign(σ)a1σ(1)a2σ(2) · ... · anσ(n).

Alternatively one can define it axiomatically:

(1) The determinant function is multilinear in its rows i.e.

det



... a1 ...

... a2 ...

...
... ...

... λai + µbi ...

...
... ...

... an ...


= λ · det



... a1 ...

... a2 ...

...
... ...

... ai ...

...
... ...

... an ...


+ µdet



... a1 ...

... a2 ...

...
... ...

... bi ...

...
... ...

... an ...


Note that the function is also multilinear in its columns. This also follows from
Leibniz’s definition.

(2) The determinant function is alternating, i.e.

det



... a1 ...

... a2 ...

...
... ...

... ai ...

... aj ...

...
... ...

... an ...


= −det



... a1 ...

... a2 ...

...
... ...

... aj ...

... ai ...

...
... ...

... an ...


.

Theorem 2.30.
Let A be a matrix with non-zero determinant and Â be a matrix obtained via row or column
operations on A, then the determinant of Â is also non-zero.

We give our own proof.

Proof.
Gaussian row (or column) operations can be represented by a matrix multiplication. To
multiply a row with a scalar λ is the same as to multiply the entire matrix with matrix

S =


1

. . . 0
λ

0
. . .

1

 .
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The determinant of S is clearly λ.
Row permutation for some rows i, j can be achieved by multiplying the matrix with matrix

P =



1 0
. . .

0 1
. . .

1 0
. . .

0 1


.

The determinant of P is −1 (determinant is alternating).

Finally row the addition of a scalar multiple (λ) of one row to another can be viewed
as the matrix multiplied with

Q =


1 0

. . .

λ 1
. . .

0 1

 .

The determinant of Q is 1. Hence any matrix Â attained by Gaussian row (or column)
operations on a matrix A with det(A) ̸= 0 has a non-zero determinant.

□

Remark 2.31.
Let A be an n×n matrix with det(A) ̸= 0. Then the n rows (or columns) of A are linearly
independent. This follows directly from Theorem 2.30.

Theorem 2.32. (Vandermonde Matrix)
The determinant of a Vandermonde Matrix V is equal to Πi>j(ai − aj), where

V =


1 a1 a21 ... an−1

1

1 a2 a22 ... an−1
2

...
...

...
. . .

...
1 an a2n ... an−1

n


and all ai for i = 1, ..., n are non-zero and distinct.

Proof. (By Induction)
Base Case: Over V = Mat2x2.

det

(
1 a1
1 a2

)
= a2 − a1.
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Induction Hypothesis: The theorem holds for n− 1× n− 1 Vandermonde matrices for
a fixed n− 1.
Induction Step:
Case 1:

There exists i, j such that ai = aj . Then det(A) = det


1 a1 a21 ... an−1

1

1 a2 a22 ... an−1
2

...
...

...
. . .

...
1 an a2n ... an−1

n

 = 0.

It follows that det(A) = Πi<j(aj − ai).
Case 2:
There exist no i, j such that ai = aj . Let an = x.
We know from Leibniz’s formula that

det(A) = cn−1x
n−1 + cn−2x

n−2 + ...+ c0.

We also know that det(A) = 0 if x = ai i = 1, ..., n− 1. It follows that

det(A) = k ·Πn−1
i=1 (x− ai),

where k is a costant.
Now the last question left to answer is what k equals. From the Leibniz formula we see
that

det(A) =
∑
σ∈Sn

sign(σ) · a1σ(1) · ... · anσ(n).

However Πn−1
i=1 (ai − x) gives us all combinations with x = an and it follows

det(A) =
∑
σ∈Sn

sign(σ) · a1σ(1) · ... · an−1σ(n−1) ·Πn−1
i=1 (ai − x).

This means that k = det(Â), where Â =


1 a1 a21 ... an−2

1

1 a2 a22 ... an−2
2

...
...

...
. . .

...
1 an−1 a2n−1 ... an−2

n−1

 .

This concludes the proof as

det(A) = Π1≤i<j≤n−1(aj − ai) ·Πn−1
i=1 (ai − x) = Π1≤i<j≤n(aj − ai).

□
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3. Coding Theory over Finite Fields.
As mentioned in chapter one coding theory solves the problem of the detection and cor-
rection of errors caused by noise. We start explaining how this is done in greater detail
by introducing some terminology.

Definition 3.1. (q-ary Codes) [Hil86]
A q-ary code is a set of words, where each word is a string made up of elements of an
alphabet Fq = {λ1, ..., λq}.

We call the words in a code code words.

Definition 3.2. (Block Codes) [Hil86]
A block code of length n is a code in which each code word is a string of a fixed length of
n symbols.

code words of a q-ary blockcode of length n all reside in (Fq)
n. In this paper we concern

ourselves with nearest neighbour decoding. This means that we assume every symbol in
the sequence of n symbols has the same probability which must be less than 1

2 of being
falsified by noise. Should an error occur we look for the closest code word to the received
message. But how can we determine if two messages are “close” to one another? Hamming
distance answers this question.

Definition 3.3. (Hamming Distance) [Hil86]
Hamming distance is a distance function on (Fq)

n. The distance between two vectors
x, y ∈ (Fq)

n is the number of entries in which they differ.

Notation 3.4.
The hamming distance of two vectors x, y ∈ (Fq)

n is denoted by d(x, y).

We note that the Hamming distance satisfies the conditions of a distance metric:

• d(x, y)= 0 if and only if x = y
• d(x, y)= d(y, x)for all x, y ∈ (Fq)

n.
• d(x, y)≤d(x, z)+ d(z, y)for all x, y, z ∈ (Fq)

n

Definition 3.5. (Minimal distance)
We define the minimum distance of a code C as

d(C) := min{d(x, y) |x ̸= y}.

Before moving on to linear codes we give the reader one very vital theorem that will also
be used in the ISBN experiment which can be found in chapter four.

Theorem 3.6. [Hil86]

(1) A code C can detect a maximum of s errors given that d(C)≥ s+ 1.
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(2) A code C can correct a maximum of t errors given that d(C)≥ 2t+ 1.

Proof.

(1) If a message with s errors is received it cannot be mistaken for a different code
word as d(C)= s+1, hence it is identified as an error. This also holds for less than
s errors.

(2) Let d(C)=2t + 1. If a code word x is transmitted and the message y is received
with t or less errors this means d(x, y)≤ t. For a code word x′ ̸= x, d(x′, y)≥ t+1
holds. One can prove this by recalling the triangle inequality which gives us:

d(x, x′) ≤ d(x, y) + d(x′, y).

If d(x′, y)is less than t + 1 this would make d(x, y)+ d(x′, y)≤ 2t and contradict
the assumption that d(C)=2t+ 1.

□

3.1. The Advantages of Linear Codes.

Definition 3.7.
We define a q-ary linear block code of length n as a subspace of Fn

q .

The vectors of such a subspace which we write x1x2...xn are the code words. Naturally
the 0-vector belongs to every linear code. Regarding notation we specify:

• the alphabet (q-ary)
• the block size (n)
• the dimension of the subspace (k)
• the minimum distance (d)

Thus when describing a linear code one can speak of an [n,k,d] code.
In the following we give the reader some theorems, lemmas and defitions such that they
might familiarize themselves with linear codes.

Definition 3.8. (Weight)
The weight w(x) of a x ∈ Fn

q is defined as the number of non-zero entries.

We now give a lemma to help us prove the following theorem, that the minimum distance
of a linear code equals the smallest weight of a non-zero code word.

Lemma 3.9. [Hil86]
If code words x and y ∈ Fn

q , then

d(x, y) = w(x− y).

Proof.
The vector x− y has non-zero entries exactly where x and y have different entries. □
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Theorem 3.10. (Weight and minimum distance) [Hil86]
Let C be a linear code and let w(C) be the smallest of weights of the non-zero code words.
Then

d(C) = w(C).

We give our own proof.

Proof.
Assume a code word x has the smallest weight of the non-zero code words. This would
mean that w(C)=d(x, 0) since C is linear and 0 therefore is a code word.
If code words z and y were to exist such that d(z, y)< d(x, 0) then the code word b = z−y
satisfies w(z − y) = ww(b) < w(x) which would be a contradiction to our assumption
about x.

□

As shown in the first chapter vectorspaces, this also means subspaces can be described
using a basis. We now show one of the great advantages of linear codes, the generator
matrix.

Definition 3.11. (Generator matrix)
A k × n matrix whose rows form a basis of code C is called a generator matrix.

Example 3.12.
Let linear [3,2,1]-code C with code words

(1) 000
(2) 100
(3) 010
(4) 110.

C can be described with the generator matrix G:

G =

(
1 0 0
0 1 0

)
.

Notice how the code words 110 and 000 can be written as sum of the rows of G.

The reader may recall Lemma 2.23, in which we proved that bases are not unique. Thus
it follows that a code C can have multiple generator matrices.

The next topic we speak on is dual codes and the parity-check matrix. Once the reader
is familiar with these we can look into the encoding and (syndrome) decoding of linear
codes. After this we will give a quick summary of the advantages of linear codes.
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Definition 3.13.
For two vectors x = x1, ..., xn, u = u1, ..., un both in Fn

q , x · u is defined as

u1x1 + u2x2 + ...+ unxn.

Definition 3.14. (Orthogonal vectors)
Two vectors x, u ∈ Fn

q are orthogonal if x · u = 0.

Definition 3.15. (Dual code) [Hil86]
Let C be a k-dimensional linear code over Fn

q . The dual code of C, denoted by C⊥, is
defined to be the set of those vectors of Fn

q which are orthogonal to every code word of C,
i.e.

C⊥ = {v ∈ Fn
q | v · x = 0 ∀x ∈ C}.

From a classic linear algebra result it follows that if C is a k-dimensional linear code over
Fn
q then C⊥ is a (n− k)-dimensional linear code over Fn

q and (C⊥)⊥ = C.

Definition 3.16. (Parity-check matrix) [Hil86]
A parity-check matrix H of linear k-dimensional code C over Fn

q is the (n−k)×n generator

matrix of C⊥.

By definition of H and C⊥ for all x ∈ C

xHT = 0.

This means a linear code can be described by its parity-check matrix as well as its gener-
ator matrix.

Before we move on to the encoding and decoding of linear codes we give a very important
theorem, which will later be used in the ISBN experiment.

Theorem 3.17. (Fundamental theorem) ([Hil86],Theorem 8.4 p.52)
Suppose C a k-dimensional linear code over Fn

q with parity-check matrix H. Then the
minimum distance of C is d if and only if any d-1 columns of H are linearly independent
but some d columns are linearly dependent.

Proof.
We know in linear codes the minimum distance is equal to the weight of the smallest
weighted code word. Let x = x1x2...xn ∈ Fn

q . We know

x ∈ C ⇐⇒ xHT = 0 ⇐⇒ x1H1 + ...+ xnHn = 0

where H1, ...,Hn are the columns of H hence the rows of HT . As a code word of weight d
exists it follows that there are d linearly dependent columns in H. If there were d-1 linear
dependent columns in H this would contradict the fact that d is the minimum distance.

□
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Encoding [Hil86]
Let C be a k-dimensional linear code over Fn

q and let G be its generator matrix. C contains

qk code words, hence there are qk messages that can be sent. We view these messages as
vectors in Fk

q and encode a vector u ∈ Fk
q by multiplying it on the right by G. G maps the

vectorspace Fk
q onto a k-dimensional subspace of Fn

q . If G is in standard form [Ik | A] the
encoding becomes easier:

uG = x = x1x2...xn,

where xi = ui for all 1 ≤ i ≤ k and xi with i > k are the product of
∑k

j=1 ajiuj .
We call xi’s where i ≤ k message digits. If i were to be greater than k the according x
would be called a check digit.

Decoding [Hil86]
Let x = x1x2...xn be a code word sent through a channel and let y = y1y2...yn. The
recipient now decides based on y which code word was sent.

Definition 3.18. (Coset)
Suppose that C is k-dimensional linear code over Fn

q and a ∈ Fn
q . Then a + C is defined

as a+ C =: {a+ c | c ∈ C}.

Lemma 3.19.
Suppose a+ C is a coset of C and b ∈ a+ C. Then b+ C = a+ C.

We give our own proof.

Proof.
Since b ∈ a + C it follows that b = a + x where x ∈ C. It also follows that a = b − x.
Every element in a+C can be written b−x+x′ and every element in b+C can be written
a+ x+ x′′, where x′, x′′ ∈ C. □

Theorem 3.20. (Lagrange)
Suppose that C is k-dimensional linear code over Fn

q and a ∈ Fn
q . Then

(1) every coset contains qk vectors,
(2) two cosets are disjoint or coincide.

We give our own proof.

Proof.

(1) There are |C| of distinct vectors in C. Hence it follows that there are |C| different
combinations of a vector in C and some vector a ∈ Fn

q .
(2) Assume y ∈ a + C and y ∈ b + C with b ̸= a. This would mean that for some

x, x′ ∈ C

a+ x = b+ x′.

From this it would follow that a = b + x′ − x = b + x′′. This would mean that
a ∈ b+ C and by the lemma above that a+ C = b+ C.
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□

Syndrome Decoding
Using the lemmas and theorems above we introduce a method of finding the code word x
that was sent using a linear code C from a received message y.

Definition 3.21. (Syndrome) [Hil86]
Let H be a parity-check of some linear code C over Fn

q and let y be some received message
vector in Fn

q . We call

s(y) = yHT

the syndrome of y.

From the definition one can notice that s(y) = y · h1, y · h2, ..., y · hn with hi denoting the
rows of H. We also can see that if y ∈ C, then s(y) = 0.

Lemma 3.22. [Hil86]
If two vectors are in the same coset they have the same syndrome.

Proof.
If two vectors, y and y’ are in the same coset a + C we can write them as y = a + x,
y′ = a+ x′.

s(y) = (a+ x)HT = aHT + xHT = aHT + 0 = aHT + x′HT = s(y′).

This holds because x, x′ ∈ C and s(x) = 0 for all x ∈ C.
□

In this lemma we essentially proved that there is a link from a specific coset to a specific
syndrome. So in order to decode a received message y we use the following algorithm.

(1) Create a look-up table where the code words of C are listed in the first row, the
cosets of C are listed in the rows beneath and the syndromes of the respective
cosets are denoted next to them, e.g.

x1 x2 x3 ...
a+ x1 a+ x2 a+ x3 ...
b+ x1 b+ x2 b+ x3 ...
c+ x1 c+ x2 c+ x3 ...

...
...

...
...




00
S(a)
S(b)
S(c)
...

 .

It is clear that the maximum weight of a, b, c, ... is d(C)−1
2 .

(2) Calculate S(y) of received vector y.
(3) Locate S(y) in the syndrome column of the look-up table, if S(y) is not in the

table ask for re-transmission.
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(4) Compare y to the vectors listed in the row in which S(y) is listed. If a match
is found assume the sent vector was the code word listed in the first row of the
column in which the match was found.

3.2. BCH-Codes.
A BCH code C is a t-error correcting code over a finite field Fq where 2t + 1 ≤ d(C).
The decoding of such codes requires solving a certain system of simultaneous non-linear
equations. We use Ramanujan’s method.
Typical for BCH codes is that the parity check matrix looks like a Vandermonde matrix
as introduced in Theorem 2.32. The difference is that Vandermonde matrices are always
m×m matrices for some m and the parity check matrix of a BCH code is not necessarily.
Constructing such a matrix can be done as follows. If one desires a t-error correcting code
of length n over Fq one finds an n such that

2t+ 1 ≤ n ≤ q − 1.

The parity check matrix H meeting the conditions above has the following form

H =


1 1 ... 1
a1 a2 ... an
...

...
. . .

...

ad−2
1 ad−2

2 ... ad−2
n

 ,

where d ≤ n ≤ q − 1 and ai i = 1, ..., n are distinct non-zero elements of Fq. This is
important because:

(1) ai, i = 1, ..., n are distinct non-zero elements of Fq because we want the determi-
nant of a Vandermonde matrix with columns from H to have a non-zero determi-
nant.

(2) d − 1 must be less than n, such that d − 1 columns are linearly independent but
d columns are linearly dependent, since we want d(C) = d (see Theorem 3.17).
We know that the rows and columns are linearly independent in a Vandermonde
matrix with a non-zero determinant.

(3) n cannot be greater than q − 1 since we want the entries ai of the parity check
matrix to be distinct and non-zero. q−1 is the number of distinct non-zero elements
in Fq.

(4) We know the zero vector is in C, hence if n < 2t+1 it follows that d(C) < 2t+1,
resulting in C not being a t-error correcting code.

Remark 3.23.
With the given parity-check matrix, a code C can be described as follows:

C =

x1x2...xn ∈ Fn
q |

n∑
i=1

ajixi = 0 j = 0, 1, ..., d− 2

 .
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3.2.1. Decoding Algorithm. The following section is based on chapter 11 of Raymond
Hill’s “A first course in coding theory” [Hil86]. In this paper you will find an almost
identical theoretical part, however with different examples.
We present a decoding algorithm for BCH codes and follow it up by giving an example
where we receive a vector y with a specific syndrome and attempt to find the vector x
that was sent.
Before giving the decoding algorithm the reader may note that encoding works exactly
the same as with the previous linear codes (u ·G = x).
For the decoding algorithm we assume d = 2t+ 1 is odd and that H has 2t rows (0 until
2t− 1).
We assume code word x = x1x2...xn was sent and received as y = y1y2...yn with t errors
(in y). Suppose these errors have occurred in positions X1, X2, ...Xt with respective mag-
nitudes m1,m2, ...,mt.
First the syndrome of y is computed, that is

S(y) = yHT = (S1, S2, ..., S2t)

where

Sj =

n∑
i=1

aj−1
i yi =

t∑
i=1

miX
j−1
i ,

for j = 1, ..., 2t (compare rows of H).
Next we have to solve the following non-linear system of equations for mi and Xi:

S1 = m1 +m2 + ...+mt,

S2 = m1X1 +m2X2 + ...+mtXt,

S3 = m1X
2
1 +m2X

2
2 + ...+mtX

2
t ,

...
...

...
...

S2t = m1X
2t−1
1 +m2X

2t−1
2 + ...+mtX

2t−1
t .

This is done by using Ramanujan’s method where on sets

ϕ(θ) =
m1

1−X1θ
+

m2

1−X2θ
+ ...+

mt

1−Xtθ
.

This is the sum of

m1(1 +X1θ +X2
1θ

2 + ....) +m2(1 +X2θ +X2
2θ

2 + ....) + ....+mt(1 +Xtθ +X2
t θ

2 + ....).

This however is equal to

(m1+m2+ ...+mt)+(m1X1+m2X2+ ...+mtXt)θ+(m1X
2
1 +m2X

2
2 + ...+mtX

2
t )θ

2+ ...,

which can also be written as the sum of the syndromes above multiplied by θ to some
power. Hence

ϕ(θ) = S1 + S2θ + S3θ
2 + ...+ S2tθ

2t−1 + ...
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From the original way ϕ(θ) was written one can receive the following equation by reducing
the fractions to a common denominator:

ϕ(θ) =
A1 +A2θ +A3θ

2 + ...+Atθ
t−1

1 +B1θ +B2θ2 + ...+Btθt
.

It follows that

(S1+S2θ+S3θ
2+...)(1+B1θ+B2θ

2+...+Btθ
t) = A1+A2θ+...+Atθ

t−1+0·θt+0·θt+1+...

Now one has a new system of equations that is considerably easier to solve, namely

A1 = S1,

A2 = S1B1 + S2,

A3 = S1B2 + S2B1 + S3,
...

At = S1Bt−1 + S2Bt−2 + ...+ St−1B1 + St,

0 = S1Bt + S2Bt−1 + ...+ StB1 + St+1,

0 = S2Bt + S3Bt−1 + ...+ St+1B1 + St+2,
...

0 = StBt + St+1Bt−1 + ...+ S2t−1B1 + S2t.

From the last t equations one can find the Bi’s and since the syndromes are known the
Ai’s can be calculated with ease.

The last step is to split the rational function of ϕ(θ) = A1+A2θ+A3θ2+...+Atθt−1

1+B1θ+B2θ2+...+Btθt
into partial

fractions to get

ϕ(θ) =
m1

1−X1θ
+

m2

1−X2θ
+ ...+

mt

1−Xtθ
.

Definition 3.24. (Error-locator Polynomial)
We define the error locator polynomial as

σ(θ) = 1 +B1θ +B2θ
2 + ...+Btθ

t.

Note that the zeros of the error-locator polynomial are the inverses of the error locations
X1, ..., Xt.

Definition 3.25. (Error-evaluator Polynomial)
We define the error-evaluator polynomial to be

ω(θ) = A1 +A2θ + ...+Atθ
t−1.

Remark 3.26.
ω(θ) = A1 + A2θ + ... + Atθ

t−1 is referred to as the error-evaluator polynomial since one
can calculate the error magnitudes with it in the following way:

m1

1−X1θ
+

m2

1−X2θ
+ ...+

mt

1−Xtθ
=

A1 +A2θ + ...+Atθ
t−1

(1−X1)(1−X2θ) · ... · (1−Xtθ)
.
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Consequently

m1 +
m2(1−X1θ)

1−X2θ
+

m3(1−X1θ)

1−X3θ
+ ...+

mt(1−X1θ)

1−Xtθ
=

A1 +A2θ + ...+Atθ
t−1

(1−X2) · ... · (1−Xt)
.

Since θ is variable we can choose it to θ = X−1
1 .

It follows that

m1 =
A1 +A2θ + ...+Atθ

t−1

(1−X2θ) · ... · (1−Xtθ)

and as X1, ..., Xt are known to us, we can compute this.

Remark 3.27. (Less than t errors)
One can determine the number of errors that have occurred by regarding the system of
linear equations. If e < t errors have occurred then t − e ̸= 0 equations will be linearly
dependent of the first e. This naturally follows from the fact that if e error occur the error
locator polynomial has a degree of e. Hence all coefficients (the Bi with i > e) equal 0.
But then the system of equations, which is

0 = S1Bt + S2Bt−1 + ...+ StB1 + St+1,

0 = S2Bt + S3Bt−1 + ...+ St+1B1 + St+2,
...

0 = StBt + St+1Bt−1 + ...+ S2t−1B1 + S2t,

turns into 
0 = St−e+1Be + St−e+2Be−1 + ...+ StB1 + St+1,

0 = St−e+2Be + St−e+3Be−1 + ...+ St+1B1 + St+2,
...

0 = S2t−eBe + S2t−e+1Be−1 + ...+ S2t−1B1 + S2t.

This system of equations has t equations and e < t unknowns. Hence the rank of matrix
M ∈ Matt×t, where

M



B1

B2
...
Be

0
...


=


−St+1

−St+2
...

−S2t

 ,

is not full, since we only have e pivot elements.

Summary of decoding algorithm (for a received vector y assuming ≤ t errors)

(1) Calculate the syndrome (S1, S2, ..., S2t).
(2) Determine the number of errors, e and set all Bi = 0 where i > e.
(3) Solve the second system of equations (with Ai’s, Si’s and Bi’s.
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(4) Find zeros of σ(θ), which is a polynomial of degree e.
(5) Calculate the error magnitudes using ω(θ) and X1, ..., Xe.
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3.2.2. Example: Decoding a vector with a BCH code.
Consider the BCH code C over F7

11 with parity-check matrix

H =


1 1 1 1 1 1 1
1 2 3 4 5 6 7
1 4 9 5 3 3 5
1 8 5 9 4 4 9
1 5 4 5 9 3 5
1 10 1 9 1 7 10

 .

We know there are exactly 2t rows in the parity-check matrix of a t error correcting code,
so C corrects 3 errors.
Imagine a vector y was received with syndrome S(y) = (S1, ..., S6) = (9, 7, 9, 0, 5, 7)
We receive the system of equations

0 = 0 + 9B1 + 7B2 + 9B3,

0 = 5 + 0B1 + 9B2 + 7B3,

0 = 7 + 5B1 + 0B2 + 9B3,

giving us

B1 = 0, B2 = 1, B3 = 9.

It is clear from the system that three errors have occurred and not one or two. Using the
values of B1, B2B3 we solve 

A1 = 9,

A2 = 7 + 0 · 9,
A3 = 9 + 0 · 7 + 1 · 9,

and receive

A1 = 9, A2 = 7, A3 = 7.

Next is the factoring of the error-locator polynomial

σ(θ) = 1 + θ2 + 9θ3.

We search for an r such that σ(r) = 0. As |F| = 11 we can do this by trying every element.
1 does the trick. It follows that (θ − 1) is a zero and divides σ(θ).
Next we divide by (θ − 1) and receive the polynomial σ̂(θ) = 9θ2 + 10θ + 10. This time
σ̂(2) = 0. After dividing σ̂ by (θ + 9), which equals (x− 2). So the factorisation in linear
terms over F11 is

σ(θ) = (θ − 1)(θ − 2)(θ − 3).

Now that we can find the error locations since

σ(θ) = (1−X1θ)(1−X2θ)(1−X3θ)
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and σ(θ) = 0 for θ = 1, 2, 3. Hence X1 = 1, X2 = 4, X3 = 6, the multiplicative inverses of
the zeros of σ(θ). Finally the magnitudes m1,m2,m3 can be calculated as follows:

m1 =
9 + 7 + 7

(1− 4)(1− 6)
=

1

4
= 3,

m2 =
9 + 28 + 112

(1− 3)(1− 18)
=

5

1
= 5,

m3 =
9 + 14 + 28

(1− 2)(1− 8)
=

7

7
= 1.
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4. An Introduction to Cryptography.
In this chapter we introduce the reader to the concept of one way functions, randomness
and digital signatures. We also look at some examples of cryptographic protocols.

4.1. Public- and Private-Key Cryptography.
Let us recall the example made in the first chapter, where we had the scenario of two people
needing to communicate over an insecure channel using a known code. We determined
that every 0 must be read as a 1 and every 1 as a 0. In the following section we will give
the reader a more mathematical way of viewing encryption and decryption.

4.1.1. Symmetric Ciphers (private-key cryptography).

Definition 4.1. We formally define encryption as

e : M×K → C
where one maps (m, k) with m plaintext and k a key to the ciphertext c.

Similarly we define decryption as

d : C × K → M
where one maps (c, k) with c ciphertext and k a key to the plaintext m.
Note that for some encryption function e the decryption function is d = e−1, the inverse
of e.

Symmetric Ciphers (private-key cryptosystems)
Suppose Alice and Bob are using a symmetric cipher.
Alice wants to send Bob plaintext m. She first maps it to a ciphertext c, using an algorithm
which is publicly known, and the private key. It is vital to the security of their private-key
cryptosystem that only trusted people know the private key.
Bob receives the ciphertext and decrypts it, using the inverse function of Alice’s encryption
function.
Written as in 4.1:

ek(m) = c

dk(c) = m

Remark 4.2.
Notice that d is the inverse function of e.

Example 4.3.
We now rewrite the example discussed in the first part of this chapter using the new
notation. First e must be defined. We set e to the function that adds k to every digit
of m. Note that we are over the field F2. By taking k = 1, we already have the desired
encryption.
For this example let m = 01. It follows that

ek(01) = 10
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since 0 + 1 ≡ 1 (mod 2) and 1 + 1 ≡ 0 (mod 2). To decrypt we use the inverse function
of e, d, that subtracts k (the same as above) from every digit of m. It follows that

dk(10) = 01.

This type of cipher is useful if its users have had a chance to exchange keys in secret. If
this is not the case a different solution must be found for secure communication. This will
be discussed in the following chapter.

4.1.2. Asymmetric Ciphers (public-key cryptography).
Assume Alice and Bob would like to communicate securely but they’ve never had a chance
to exchange a private-key. Their only means of communication is over an insecure channel.
Their solution is public-key cryptography, also known as asymmetric cryptography.
The main difference between asymmetric and symmetric cryptography is the amount of
keys. In asymmetric cryptography one uses a public and a private key. The public one
is for encryption and the private one for decryption, allowing anyone to send Bob an
encrypted message but just Bob to decrypt it.
Written as in Notation 4.1:

ekpub(m) = c

dkpriv(c) = m

The concept of asymmetric cryptography is similar to that of a mailbox: anyone wishing to
contact Alice can send a letter which will be delivered to her mailbox, to which only Alice
possesses the key. In this analogy the address would be the public key of an asymmetric
cipher and the key to the mailbox the private one.

Remark 4.4.
One may observe that in order for this to work it must be infeasible for an attacker to
find the inverse function to ekpub . In cryptography dkpriv is commonly also referred to as
a trapdoor function. kpriv contains additional information allowing the holder to invert
ekpub in an acceptable amount of time.

In the next section the reader will be introduced to the discrete logarithm problem, also
known as the DLP, and learn more about the special functions mentioned in Remark 4.4.

4.2. A One-Way Function.
The concept behind most cryptographic protocols is as follows.
One would like a function that is easily computable and hard to invert. Additionally a
trapdoor, that is to say a means of computing the inverse if one has a certain piece of
additional information, is important. Thus one can encrypt using a public key and be
secure in knowing that the encrypted message cannot be decrypted by inversion of the
(public) encryption function using the public key. In this chapter we focus on the Discrete
logarithm, which is an essential part of the Diffie-Hellman Key Exchange. This will be
further described in the next section.
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4.2.1. The Discrete Logarithm Problem.
In the discrete logarithm problem we try to calculate the logarithm logg(h) over a finite
field. This is easier said than done.

Definition 4.5. [HPS06]
Let g be the primitive root of Fp and let h be a non-zero element of Fp. The discrete
logarithm problem (DLP) is the problem of finding an exponent x such that gx ≡ h
(mod p).

In this section the hardness of the DLP will be examined.
Note that in computer science the hardness of a problem is defined by the amount of
operations that are necessary to solve it, using the most efficient method currently known
(for non quantum computers). A problem is deemed hard in computer science if it cannot
be solved efficiently.
The first and weakest algorithm is the trivial bound algorithm.

Proposition 4.6.
Let g ∈ G be a non-zero element of order N , then the discrete logarithm can be solved in
O(N)steps.

Proof.
Compute g, g2, g3, ..., gN . If a solution exists, then h appears before one reaches gN . Note
that gi = gi−1 · g thus one must only store one number and the number g. □

Remark 4.7.
O(N) looks linear however if one chooses p between 2k and 2k+1 then the problem is stated
in O(k) bits.
As we know a brute-force attack takes O(N) which is about O(p) (N=p-1 for p prime)
and O(p) = O(2k) which is exponential.

We now present Shank’s Algorithm, also know as the Babystep-Giantstep Algorithm

Proposition 4.8. (Babystep-Giantstep Algorithm) [Dan71]
Let G be a group and let g ∈ G be an element of order N ≥ 2.
Babystep-Giantstep solves gx ≡ h in

√
N logN steps.

(1) Let n = 1 + ⌈
√
N⌉.

(2) Create two lists:
List 1: e, g, g2, ..., gn−1

List 2: h, hg−n, hg−2n, ..., hg−(n−1)n

(3) Find a match such that gi = hg−jn

(4) x = i+ jn is a solution for gx = h.

Proof.
Creating both lists requires 2n multiplications. These can be neglected.
Finding a match with an efficient searching and sorting algorithm has a time complexity
of O(n log n). Since n ≈

√
N one can say the time complexity of the Babystep-Giantstep
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algorithm is O(
√
N log

√
N).

Now the proof that a match will always be found in both lists if an x exists such that
gx = h :
Write x = i+ jn where 0 ≤ i < n
It is clear that 1 ≤ x < N impliesx− i < N
From

x = i+ jn =⇒ j =
x− i

n
<

N

n
< n,

one sees that q < n meaning one can always find a match in the two lists.
□

We now present the Pohlig-Hellman Algorithm. In order to do this we first state and
prove the Chinese Remainder theorem.

Theorem 4.9. (Chinese Remainder theorem) [HPS06]
Let m1,m2, ...,mk be a collection of pairwise relative prime integers, that is gcd(mi,mj) =
1 for i ̸= j.
Let a1, ..., ak be arbitrary integers. Then the system of simultaneous congruences

x ≡ a1 (mod m1), ..., x ≡ ak (mod mk)

has a solution x = c.
The solution c is unique up to equivalence modulo m1 ·m2 · ... ·mk.

Example 4.10.
x ≡ 1 (mod 5) and x ≡ 9 (mod 11). Does there exist such an x, if so what value does x
have?

x ≡ 1 + 5y

with y an arbitrary integer.

x ≡ 9 (mod 11) =⇒ 5y ≡ 8 (mod 11)

=⇒ y ≡ 8 · 9−1 ≡ 8 · 9 ≡ 6 (mod 11)

=⇒ x = 1 + 5 · 6

Now to the proof of the theorem:

Proof.
Suppose one has the solution x = ci for the first i congurences. One can find further
solutions of the form x = ci +m1 ·m2 · ... ·mi · y.
One chooses y such that x also satisfies x ≡ ai+1 (mod mi+1) so

ci +m1 ·m2 · ... ·mi · y ≡ ai+1 (mod mi+1).

□
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The idea of Pohlig and Hellman was as follows: when one solves the DLP for x, x is in
modulo p− 1. What if one could break the factorisation of p− 1 down, such that one can
solve simultaneous congruences to find x?

Theorem 4.11. (Pohlig Hellman Algorithm) [HPS06]
Let G be a group. Suppose one can solve the DLP for any g ∈ G whose order is a prime
power. If some g ∈ G have order qe, where q is prime, we may assume the DLP for g can
be solved in O(Sqe) steps.
Let g ∈ G be of order N and let N = qe11 · ... · qett , where the qi’s are distinct primes. Then

the DLP for g can be solved in O
(∑t

i=1 Sq
ei
i
+ log(N)

)
steps.

Procedure:

(1) For each 1 ≤ i ≤ t, let

gi = g
N

q
ei
i and hi = h

N

q
ei
i .

One can observe that gi has order qeii .
(2) Solve gxi

i = hi with an efficient algorithm such as the Babystep-Giantstep Algo-
rithm.

(3) Use Chinese remainder theorem to solve the simultaneous congruences for x ≡ x1
(mod qe11 ), ..., x ≡ xn (mod qett ).

Proof.
It holds that:
(2) takes O

(∑t
i=1 Sq

ei
i

)
steps,

(3) takes O
(
log(N)

)
steps.

All that is left to be shown is that one always gets a valid solution x for gx = h.
Let x be the solution of the system of congruences.
For each i we can write x = xi + qeii · zi for some zi and compute,

(gx)
N

q
ei
i =

(
gxi+q

ei
i ·zi

) N

q
ei
i (8)

=

(
g

N

q
ei
i

)xi

· gNzi (9)

=

(
g

N

q
ei
i

)xi

(10)

=gxi
i (11)

=hi (12)

=h
N

q
ei
i . (13)
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It follows that
N

qeii
· x ≡ N

qeii
· logg(h) (mod N).

The gcd of N
q
e1
1

, ..., N
qenn

is one, so by Theorem 2.2 one can find integers c1, ..., ct such that

N

qe11
· c1 + ...+

N

qett
· ct = 1.

Hence
t∑

i=1

N

qeii
· ci · x ≡

t∑
i=1

N

qeii
· ci · logg(h) (mod N),

giving us
x ≡ logg(h) (mod N).

Thus one can conclude that it is wise to choose prime p as 2 · q + 1, where q is a large
prime. □
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4.3. RSA and Diffie-Hellman Protocols.
In this section we present the RSA and Diffie-Hellman protocols and show how one can
make use of hard problems.

4.3.1. Diffie-Hellman Key Exchange. [HPS06]
Cryptography’s two most prominent stars Alice and Bob would like to exchange a secret
key over an insecure channel using the Diffie-Hellman key exchange.
The procedure:

(1) They agree upon a large prime p and a non-zero integer g, whose order is a large
prime. These can be known to an adversary.

(2) Alice and Bob both pick secret integers a and b and compute:

A ≡ ga (mod p) B ≡ gb (mod p)

(3) They exchange the values A and B publicly.
(4) Next they compute:

A′ ≡ Ba (mod p), B′ ≡ Ab (mod p).

(5) The values they compute are the same since

A′ ≡ Ba ≡ (gb)a ≡ (ga)b ≡ Ab ≡ B′ (mod p).

(6) This common value is the exchanged key.

Definition 4.12. (DHP)
Let p be a prime number and g an integer. The Diffie-Hellman problem (DHP) is the
problem of computing gab from the public values ga and gb.

If one can solve the DLP one can also solve the DHP. The other direction is not known.

4.3.2. RSA.
The RSA-Protocol is a further example of asymmetric cryptography. It relies on the
problem of factoring a large number N=pq into primes p and q, or obtaining the value
of (p − 1)(q − 1) from N (also knows as the totient of N). This paper skips the exact
examination of the factoring problem and instead only focuses on the RSA protocol. Before
being able to present the actual RSA protocol however we must first introduce a theorem
and a lemma.

Theorem 4.13. (Euler’s theorem) [HPS06]
Let p and q be distinct primes and let

g = gcd(p− 1, q − 1).

Then a(p−1)(q−1)/g ≡ 1 (mod pq) for all a with gcd(a, pq) = 1.

Proof. It holds that

a(p−1)(q−1)/g = (a(p−1))(q−1)/g.
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In modulo p:

(a(p−1))(q−1)/g ≡ 1(q−1)/g (mod p). (14)

Further,

a(p−1)(q−1)/g = (a(q−1))(p−1)/g,

so modulo q we get

(a(q−1))(p−1)/g ≡ 1(q−1)/g (mod q). (15)

One can observe that p − 1 or q − 1 is always divisible by g by definition of the gcd and
since a(p−1)(q−1)/g − 1 is both divisible by p as by q, it follows that a(p−1)(q−1)/g − 1 is
divisible by pq. □

Lemma 4.14.
Let p and q be distinct primes and let e ≥ 1 be an integer satisfying gcd(e, (p−1)(q−1)) = 1,
this means that by Theorem 2.2 it follows that e has a multiplicative inverse, d modulo
(p−1)(q−1). Also assume that gcd(c, pq) = 1. Then the congruence xe ≡ c (mod pq) has
a unique solution x ≡ cd (mod pq).

Proof.
It holds that: If c ≡ 0 then x ≡ 0.
As de ≡ 1 (mod (p− 1)(q− 1)) we know that de = 1+ k(p− 1)(q− 1) for some integer k.
We now show that x ≡ cd (mod pq) is a valid solution.

(cd)e ≡cde (mod pq) (16)

≡c1+k(p−1(q−1) (mod pq) (17)

≡c · (c(p−1)(q−1))k (mod pq) (18)

≡c · 1k (mod pq) (19)

≡c (mod pq) (20)

It follows that (cd)e ≡ c (mod pq), thus x ≡ cd (mod pq) is a valid solution.
Next we will show the uniqueness of the solution presented above. Assume u = x is a
solution for xe ≡ c (mod pq) and recall that de = 1+k(p− 1)(q− 1). Also note that since
c is invertible modulo pq we also know that u is invertible.

u ≡ ude−k(p−1)(q−1) (mod pq) (21)

≡(ue)d · (u(p−1)(q−1))−k (mod pq) (22)

≡(ue)d · 1−k (mod pq) (23)

≡cd (mod pq) (24)

The last step is possible because one assumes ue ≡ c (mod pq).
It follows that every solution is of the form cd.

37

mailto:constantinosvasiliosargyris.vlachos@uzh.ch


Matura Project
2023

Constantin Vlachos
constantinosvasiliosargyris.vlachos@uzh.ch

□

The RSA cryptosystem is based on the hardness of finding (p− 1)(q − 1) from a number
N=pq with p and q large primes without knowing the values p and q, merely N .
It hasn’t been broken yet since there is no (non-quantum) polynomial-time algorithm that

(1) factors N into pq,
(2) finds (p− 1)(q − 1) only knowing the value of N = pq.

Now back to Alice and Bob.
Suppose Alice and Bob would like to communicate using the RSA cryptosystem.
This is their setup: let p and q be large primes and let N be their product pq. Let e, m
and c be integers. Let gcd(e, (p− 1)(q − 1)) = 1.
This is their procedure:

(1) Bob’s public key is (N,e) and his secret key is (p,q).
(2) Alice encrypts plaintext m by computing c ≡ me (mod N)
(3) Bob solves xe ≡ to recover m, which can be done because Bob knows p and q.

(Lemma 4.14).

Remark 4.15.
An adversary only needs (p − 1)(q − 1) to efficiently solve xe ≡ c (mod N) (not the full
secret key (p, q)).
If the adversary knows the sum p+ q they can find (p− 1)(q − 1). Indeed, we have that

(p− 1)(q − 1) = pq − p− q + 1 = N − (p+ q) + 1.
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4.4. Pseudo-random Functions and Generators.
In cryptography one often uses “random” numbers, selected by algorithms. But how could
an algorithm possibly generate random numbers, wouldn’t it just output the numbers it
was programmed to?
Due to the need of random numbers in cryptosystems such as RSA and NTRUE, pseudo-
random generators (PRGs) and pseudo-random functions (PRFs) have been designed.
They take an input and give back a seemingly unrelated and random output. In reality
however the output is not random at all.

4.4.1. Pseudo-random Generators.
Idea: The goal is a deterministic algorithm where one can input a seed with significantly
smaller bit-length than the output. Given the output it should be hard to tell if it was
randomly chosen or it was generated by inputting a seed in said algorithm.
Construction: (Blum Blum Shub) [[Bon11]]
Suppose a non-zero seed x0 ̸= 1 and the two large prime numbers p and q are given and
N = pq. Let x0 be coprime to p and q and define the sequence (xn) by:

xn+1 = x2n (mod N).

The security of the PRG is based on the hardness of the quadratic residue problem (QRP),
which states that given an integer a and N = pq where p and q are large primes, it is hard
to decide whether a is a quadratic residue or not.
Here an example to illustrate the QRP:
Let N = 10. We can observe that 2, 3, 7, 8 are not quadratic residues modulo 10:

• 02 ≡ 0 (mod 10)
• 12 ≡ 1 (mod 10)
• 22 ≡ 4 (mod 10)
• 32 ≡ 9 (mod 10)
• 42 ≡ 6 (mod 10)
• 52 ≡ 5 (mod 10)
• 62 ≡ 6 (mod 10)
• 72 ≡ 9 (mod 10)
• 82 ≡ 4 (mod 10)
• 92 ≡ 1 (mod 10).

There is no efficient way known to see if 8 was really a quadratic residue without computing
the squares of 2, 3, 4 and 5 modulo 10 (we only need squares 0-5 because the curve of x2

is symmetrical).

Remark 4.16.
One must choose a modulo N that isn’t prime. If N=p, an odd prime, then determining
if ak (mod p) is a quadratic residue can be done efficiently.
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Lemma 4.17. (Legendre Symbol)

Let p be an odd prime, a ∈ F⋆
p and let gcd(a, p) = 1. Then a

p−1
2 ≡ 1 (mod p) if and only

if a is a quadratic residue modulo p.

Proof. We begin by regarding the group homomorphism

ϕ : F⋆
p → F⋆

p,

where

x 7→ x2.

As p is prime it follows that ker(ϕ) = {1,−1}. Thus we see that half of the element of F⋆
p

are quadratic residues (that is exactly p−1
2 elements).

By Theorem 2.3 we know that for any element a of F⋆
p, a

p−1 ≡ 1 (mod p) holds. This
means any element in F⋆

p is a root of the following polynomial in Fp[T ]

T p−1 − 1.

Recalling that p is odd this polynomial can also be written as

T p−1 − 1 = (T
p−1
2 + 1)(T

p−1
2 − 1).

It follows that for a ∈ F⋆
p satisfies

a
p−1
2 ≡ ±1 (mod p).

Finally we finish the proof by showing that the roots of (T
p−1
2 −1) are all the p−1

2 quadratic
residues of F⋆

p.

To do this consider an element a ∈ F⋆
p and b such that b2 = a and a is a quadratic residue.

Then it follows that

a
p−1
2 = bp−1 ≡ 1 (mod p).

This concludes the proof as we have showed that quadratic residue is a root of (T
p−1
2 − 1)

giving us that every quadratic residue raised to the power of p−1
2 equals one. We also

found that the other p−1
2 elements are all not quadratic residues and that they equal −1

when raised to the power of p−1
2 . □

4.4.2. Pseudo-random Functions.
The goal is a function where one can input a number and receive back a random looking
bit-string. A way of simplifying this function is to think of it as linked to a PRG. If one
inputs i it outputs the i’th generated string by the PRG.

Construction: (Goldreich, Goldwasser, Micali) [[GGM86]]
Let G be a PRG where G : {0, 1}s → {0, 1}2s.
Define G0 and G1 to be the left and right halves of G, both of length s.
G(x) = G0(x) ∥ G1(x).
Take any secret key k ∈ {0, 1}s (k’s binary representation is limited to max. length s).
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Define fk : {0, 1}n 7→ {0, 1}s by fk(x1, ..., xn) = Gxn(Gxn−1(...(Gx1(k))))
In simpler terms:

(1) G(k) : {0, 1}s 7→ {0, 1}2s.
(2) G(k) = G0(k) ∥ G1(k).
(3) For x1 = 0 take G0(k) (left side).

For x1 = 1 take G1(k) (right side).
(4) Loop back to 1) for xi with i = 1, ..., n.

4.5. Digital Signatures.
Alice would like to show her approval of a document by putting a digital signature on it.
Anyone receiving her document can check if the signature on the document is indeed hers.
The encryption key of a digital signature function is private, since she doesn’t want other
people to be able to sign using her signature.
The decryption (or verification) key is public in order to let anyone validate a signature.

Before presenting a more formal description of digital signatures we give a few defini-
tions and introduce hash functions.

4.5.1. Hash Functions.

Definition 4.18. (Collision Resistance)
A function f is called collision resistant if it is hard to find x and y, such that f(x) = f(y)
where x ̸= y.

Definition 4.19. (Pre-Image Resistance)
A function f is pre-image resistant when given an x, it is hard to find a y such that
f(y) = x.

Definition 4.20. (Second Pre-Image Resistance)
A function f is called second pre-image resistant if given an x, it is hard to find a y ̸= x ,
such that f(x) = f(y).

Definition 4.21. (Hash Functions) A hash function is an algorithm that maps a binary
string of arbitrary length to a binary string of fixed length of n-bits. This function must
also be:

• collision resistant
• pre-image resistant
• second pre-image resistant
• computable in almost linear time.

Remark 4.22.
Collision resistance implies second pre-image resistance. The latter however does not
imply the former.

Construction:
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Suppose h(x1, ..., xn, xn+1, ...xs) = (x1, ..., xn), for x1 ∈ {0,1} for i = 1, ..., s
The proposed function h fulfills the condition of mapping a string of arbitrary length to
fixed length n.
However there is:

• no pre-image resistance: h(x1, ..., xn, ...) = (x1, ..., xn) so we can easily find a pre-
image for example (x1, ...xn, y) ,where y ∈ {0, 1}.

• no collision resistance: h(x1, ..., xn, x
′) = (x1, ..., xn) = h(x1, ..., xn, x

∗) for x′ ̸= x∗.

Therefore h is not an appropriate hash function for cryptographic applications.

Now consider this example and the algorithm H [HPS06]. To compute H(D) with D
a binary string of arbitrary length we do the following.

(1) First D is lengthened with 0-bits until its bit-length is divisible by n.
(2) Next we write D as the concatenation D = D1 ∥ D2 ∥ ... ∥ Dk where Di has length

n for every i = 1, .., k.
(3) One starts with an initial bit-string H0 of length n and computes M(D1), where

M is a mixing algorithm and sets H1 = M(D1)⊕H0

(4) One repeats this until Hk = M(Dk)⊕Hk−1.
(5) Hash(D) = Hk.

Remark 4.23.
One can observe that H does not fulfill the property of collision resistance. We illustrate
this now.
Assuming we are given H(D), H0,M we can re-write the algorithm:

H(D) = Hk = H0 ⊕M(D1)⊕ ...⊕M(Dk)

One can construct an algorithm that finds a collision by finding a second pre-image. The
algorithm works as follows.

(1) Solve H0 ⊕X = H(D) for X, a bit-string of length n.
(2) X = M(Y ), where Y is our second pre-image. So to get Y one applies the inverse

function of M .

4.5.2. Digital Signatures using Hash Functions.
We are given the following setup:

• Kpriv: signing key
• Kpub: verification key
• Sign: signing algorithm with input D, kpriv and output Dsig for D.
• Verify: verification algorithm with input D, Dsig, kpub and output True / False.

It is very important that:

(1) It is hard to find a Dsig′ ̸= Dsig for which Verify gives the output True.
(2) Given kpub one cannot find kpriv

Since signing big documents would take very long, one only signs the hash of a document
instead of the entire document. The security is not weakened since hash functions are
collision and pre-image resistant.
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4.5.3. RSA Digital Signature. [RSA78]
To illustrate the theory we give an example of the RSA-signature.
Setup:
Alice chooses two large primes p, q which she keeps secret.
She computes pq = N and chooses a public verification exponent e, a non-zero integer
with gcd(e,N) = 1.
She solves the congruence de ≡ 1 (mod (p − 1)(q − 1)) and takes d as her secret signing
key.
To sign D (assuming D is an integer between 1 < D < N) Alice computes: S ≡ Dd

(mod N).
To verify one can compute Se (mod N) and may assume the document was signed by
Alice if Se ≡ D (mod N).
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5. The ISBN Experiment.
The aim of this section is to find a parity-check matrix for the IBAN code that we assume
is linear. We also assume that the dimension of the dual-code is non-zero.

5.1. Recapitulation of Linear Codes.
We begin this chapter with a short recapitulation of linear codes.

We know: Every linear code has a generator matrix G and a parity-check matrix H.
The parity-check matrix of an (n, k, d)-code C is an n − k × n matrix H over the chosen
field K such that the following holds:

c ∈ C ⇐⇒ cHt = 0,

it follows that
GHt = 0.

This means that the rows of any parity-check matrix H span the kernel of a generator
matrix G.
Hence to find H we find Ker(G) by collecting code words of C and computing a basis for
them. The basis elements are the rows of a generator matrix G. Next we calculate a basis
of Ker(G). Finally we take the basis vectors of Ker(G) as the rows of H.

5.2. The ISBN Experiment. ISBN stands for International Standard Book Number.
The code is used to identify books. Now a brief scenario to give the reader a feel for where
coding theory is hidden in these book numbers.
Say you are on the phone with the book store and are ordering a book by reading out its
ISBN number. Imagine the store employee gets one digit wrong. The ISBN code detects
such an error and produces an error or no results when the store employee looks up the
false number.

5.2.1. Our own Experiment.
We assume that the ISBN code is linear and we want to find a parity-check matrix for it.
We employ the method described above. However since we don’t have G and only know
that the ISBN code is an (10, k, d)-code we have to guess k. We start by guessing low,
taking one code word c1 and calculating a basis of the kernel of the generator matrix. We
know this is also a basis for the row span of H meaning that for all u ∈ Ker(G)

⟨c, u⟩ = 0.

The next step is choosing a particular basis vector of spanr(H) and attempting to find
a code word c such that ⟨c, u⟩ ̸= 0 over the field K. In our case we are over the field
F11 = Z/11Z. If we find such a c, let’s call it c2, then we conclude that k > 1 and that
the supposed generator matrix was too small and make a new one. The rows of the new
generator matrix, let’s call it G2, are c1 and c2. We carry on with this procedure until we
cannot find any code word c such that ⟨c, u⟩ ≠ 0. We assume k ≤ 9 otherwise the code
would not correct or detect any errors.
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5.2.2. Conducting our Experiment.
We begin with assuming the H has rank 9. This is the highest possible guess since if
rank(H)=10 the generator matrix would be the zero-matrix, which it is obviously not. In
this experiment we take our samples from the back of books. So whenever a new code
word is introduced it is taken from the back of a book.
We also note that throughout this experiment the website [Mat] was used to facilitate
matrix calculations.
Assume Rank(H)=9
We want to clarify that every time a new code word is introduced this means the author
has simply copied it from the back of a book.
Let our code word be called c1 =

(
0 4 7 1 9 9 4 6 2 6

)
.

As described above we take c1 as the row of G1 (in the case our supposed generator matrix
has rank 1).

G1 =
(
0 4 7 1 9 9 4 6 2 6

)
We calculate a basis of the kernel of G using matrixcalc.org and receive

BKer(G1) =





1
0
0
0
0
0
0
0
0
0


,



0
−7
4
1
0
0
0
0
0
0
0


,



0
−1
4
0
1
0
0
0
0
0
0


,



0
−9
4
0
0
1
0
0
0
0
0


,



0
−9
4
0
0
0
1
0
0
0
0





0
−1
0
0
0
0
1
0
0
0





0
−3
2
0
0
0
0
0
1
0
0





0
−1
2
0
0
0
0
0
0
1
0





0
−3
2
0
0
0
0
0
0
0
1




Since we have established that Spanr(H) = Ker(G) it follows that if and only if G1 = G
then for all c ∈ C ⟨c, u⟩ = 0 (mod 11) holds, where u is a linear combination of the basis
vectors above.
We choose u2 to be the first basis vector

(
1 0 · · · 0

)
and introduce a new code word

c2 =
(
1 5 8 4 8 8 0 1 8 X

)
. However it is clear that ⟨c2, u2⟩ ̸= 0 (mod 11).

Hence G1 ̸= G and the search for generator and parity-check matrices goes on. (Also
notice that in the ISBN code over F11, we denote 10 as X. This lets every code word have
10 digits.)
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Assume Rank(H)=8
The code words

• c1 =
(
0 4 7 1 9 9 4 6 2 6

)
• c2 =

(
1 5 8 4 8 8 0 1 8 X

)
lead to the generator matrix

G2 =

(
0 4 7 1 9 9 4 6 2 6
1 5 8 4 8 8 0 1 8 X

)
.

Thus, we set

BKer(G2) =





3
4−7
4
1
0
0
0
0
0
0
0


,



−11
4−1
4
0
1
0
0
0
0
0
0


,



13
4−9
4
0
0
1
0
0
0
0
0


,



13
4−9
4
0
0
0
1
0
0
0
0





5
−1
0
0
0
0
1
0
0
0





13
2−3
2
0
0
0
0
0
1
0
0





−11
2−1
2
0
0
0
0
0
0
1
0





−5
2−3
2
0
0
0
0
0
0
0
1





.

We choose another u, this time u3 and let u3 =
(
5 −1 0 0 0 0 1 0 0 0

)
. Next

we introduce c3 =
(
0 2 7 3 0 8 6 7 8 2

)
. And since ⟨c3, u3⟩ ̸= 0 (mod 11) it

follows that G2 ̸= G.
Assume Rank(H)=7
The code words

• c1 =
(
0 4 7 1 9 9 4 6 2 6

)
• c2 =

(
1 5 8 4 8 8 0 1 8 X

)
• c3 =

(
0 2 7 3 0 8 6 7 8 2

)
lead to the generator matrix

G3 =

0 4 7 1 9 9 4 6 2 6
1 5 8 4 8 8 0 1 8 X
0 2 7 3 0 8 6 7 8 2

 .
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Thus, we set

BKer(G3) =





−23
7
1
−5
7
1
0
0
0
0
0
0


,



59
14−9
2
9
7
0
1
0
0
0
0
0


,



5
2−1
2
−1
0
0
1
0
0
0
0





29
7
1
−8
7
0
0
0
1
0
0
0





79
14
1
2−8
7
0
0
0
0
1
0
0





−7
3
−2
0
0
0
0
0
1
0





−16
7
−2
2
7
0
0
0
0
0
0
1





.

Let u4 =
(
5
2

−1
2 −1 0 0 1 0 0 0 0

)
. We introduce c4 =

(
0 5 8 2 0 1 8 6 1 7

)
.

After calculating ⟨c4, u4⟩ = 8− 8 + 1 = 1 (mod 11) it follows that G3 ̸= G.
Assume Rank(H) = 6
The code words

• c1 =
(
0 4 7 1 9 9 4 6 2 6

)
• c2 =

(
1 5 8 4 8 8 0 1 8 X

)
• c3 =

(
0 2 7 3 0 8 6 7 8 2

)
• c4 =

(
0 5 8 2 0 1 8 6 1 7

)
lead to the generator matrix

G4 =


0 4 7 1 9 9 4 6 2 6
1 5 8 4 8 8 0 1 8 X
0 2 7 3 0 8 6 7 8 2
0 5 8 2 0 1 8 6 1 7

 .

Thus, we set

BKer(G4) =





−27
5

−11
2
19
2
1
0
0
0
0
0


,



−196
6
62
9−113
18
133
18
0
1
0
0
0
0


,



14
−2
1
−3
0
0
1
0
0
0


,



4
1
−3
2
1
2
0
0
0
1
0
0


,



−7
3
−2
0
0
0
0
0
1
0


,



−37
9−13
9−1
9
5
9
0
0
0
0
0
1





.

Let u5 =
(
−7 3 −2 0 0 0 0 0 1 0

)
. We introduce c5 =

(
0 8 2 8 4 0 2 6 8 X

)
.

⟨c5, u5⟩ ≡ 4 (mod 11)
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hence
G4 ̸= G.

Assume Rank(H)=5
The code words

• c1 =
(
0 4 7 1 9 9 4 6 2 6

)
• c2 =

(
1 5 8 4 8 8 0 1 8 X

)
• c3 =

(
0 2 7 3 0 8 6 7 8 2

)
• c4 =

(
0 5 8 2 0 1 8 6 1 7

)
• c5 =

(
0 8 2 8 4 0 2 6 8 X

)
lead to the generator matrix

G5 =


0 4 7 1 9 9 4 6 2 6
1 5 8 4 8 8 0 1 8 X
0 2 7 3 0 8 6 7 8 2
0 5 8 2 0 1 8 6 1 7
0 8 2 8 4 0 2 6 8 X

 .

Thus, we set

BKer(G5) =





3341
981
2183
981−1126
981−1444
981−305
327
1
0
0
0
0


,



554
109−38
109−89
109
15
109
36
109
0
1
0
0
0


,



841
109
34
109−81
109−88
109−15
109
0
0
1
0
0


,



−7
109
187
109−64
109−266
109−28
109
0
0
0
1
0


,



−3385
981−1537
981
23
981
317
981−8
327
0
0
0
0
1





.

We take u6 =
(
554 −38 −89 15 36 0 109 0 0 0

)
and introduce

c6 =
(
3 5 4 0 5 2 0 0 0 7

)
. To simplify the dot product calculations we give

the reader u6 =
(
4 6 X 4 3 0 X 0 0 0

)
(mod 11).

⟨c6, u6⟩ ≡ 9 (mod 11)

hence
G5 ̸= G.

Assume Rank(H)=4
The code words

• c1 =
(
0 4 7 1 9 9 4 6 2 6

)
• c2 =

(
1 5 8 4 8 8 0 1 8 X

)
• c3 =

(
0 2 7 3 0 8 6 7 8 2

)
• c4 =

(
0 5 8 2 0 1 8 6 1 7

)
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• c5 =
(
0 8 2 8 4 0 2 6 8 X

)
• c6 =

(
3 5 4 0 5 2 0 0 0 7

)
lead to the generator matrix

G6 =


0 4 7 1 9 9 4 6 2 6
1 5 8 4 8 8 0 1 8 X
0 2 7 3 0 8 6 7 8 2
0 5 8 2 0 1 8 6 1 7
0 8 2 8 4 0 2 6 8 X
3 5 4 0 5 2 0 0 0 7

 .

Thus, we set

BKer(G6) =





10174
4607−10258
4607
701
4607
6357
4607
5148
4607

0−3888
4607
1
0
0
0


,



36323
13821−41632
13821
13427
13821
19232
4607
5785
4607−6882
4607
0
1
0
0


,



−16765
13821
13337
13821−2764
13821−26866
13821
266
460−1554
4607
0
0
1
0


,



−3408
4607
942
4607−4101
4607−3909
4607−3533
4607
3667
4607
0
0
0
1





.

We take u7 =
(
−3408
4607

942
4607

−4101
4607

−3909
4607

−3533
4607

3667
4607 0 0 0 1

)
≡
(
X 2 X 2 1 9 0 0 0 9

)
(mod 11) and introduce c7 =

(
3 5 4 0 1 3 6 1 6 9

)
.

⟨c7, u7⟩ = 189 ≡ 2 (mod 11).

hence

G6 ̸= G.

Assume Rank(H)=3
The code words

• c1 =
(
0 4 7 1 9 9 4 6 2 6

)
• c2 =

(
1 5 8 4 8 8 0 1 8 X

)
• c3 =

(
0 2 7 3 0 8 6 7 8 2

)
• c4 =

(
0 5 8 2 0 1 8 6 1 7

)
• c5 =

(
0 8 2 8 4 0 2 6 8 X

)
• c6 =

(
3 5 4 0 5 2 0 0 0 7

)
• c7 =

(
3 5 4 0 1 3 6 1 6 9

)
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lead to the generator matrix

G7 =



0 4 7 1 9 9 4 6 2 6
1 5 8 4 8 8 0 1 8 X
0 2 7 3 0 8 6 7 8 2
0 5 8 2 0 1 8 6 1 7
0 8 2 8 4 0 2 6 8 X
3 5 4 0 5 2 0 0 0 7
3 5 4 0 1 3 6 1 6 9


.

Thus, we set

BKer(G7) =





32218
1581−11019
527
2313
1054
39469
3162
5395
527−4362
527
1495
186
1
0
0


,



−29549
1581
9795
527−740
527−20338
1581−4630
527
3342
527−736
93
0
1
0


,



−30997
1581
30397
1581−6925
3162−13319
1054−5435
527
4219
527−1589
186
0
0
1





.

We choose the transpose of the third vector to be u8 and taking modulo 11 to account
u8 =

(
7 6 1 X 1 5 5 0 0 1

)
.

Next we introduce c8 =
(
0 4 1 2 0 7 3 3 1 5

)
.

⟨c8, u8⟩ = 100 ≡ 1 (mod 11)

hence

G7 ̸= G.

Assume Rank(H)=2
The code words

• c1 =
(
0 4 7 1 9 9 4 6 2 6

)
• c2 =

(
1 5 8 4 8 8 0 1 8 X

)
• c3 =

(
0 2 7 3 0 8 6 7 8 2

)
• c4 =

(
0 5 8 2 0 1 8 6 1 7

)
• c5 =

(
0 8 2 8 4 0 2 6 8 X

)
• c6 =

(
3 5 4 0 5 2 0 0 0 7

)
• c7 =

(
3 5 4 0 1 3 6 1 6 9

)
• c8 =

(
0 4 1 2 0 7 3 3 1 5

)
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lead to the generator matrix

G8 =



0 4 7 1 9 9 4 6 2 6
1 5 8 4 8 8 0 1 8 X
0 2 7 3 0 8 6 7 8 2
0 5 8 2 0 1 8 6 1 7
0 8 2 8 4 0 2 6 8 X
3 5 4 0 5 2 0 0 0 7
3 5 4 0 1 3 6 1 6 9
0 4 1 2 0 7 3 3 1 5


.

Thus, we set

BKer(G8) =





−25749
9859
41289
19718
12887
39436−119031
39436−14015
19718−1845
9859−62077
39436
15553
19718
1
0


,



13836
69013−453737
414078−47329
828156−417875
828156−50125
138026−2698
69013−605309
828156
134153
138026
0
1





.

In modulo 11 this reads

BKer(G8) =





4
1
6
0
9
1
7
9
1
0


,



2
7
7
7
X
3
1
7
0
1





.

We choose the transpose of the first vector to be u9 and introduce c9 = 0412406500.

⟨c9, u9⟩ = 133 ≡ 1 (mod 11)

hence
G8 ̸= G.

Assume Rank(H) = 1
The code words

• c1 =
(
0 4 7 1 9 9 4 6 2 6

)
• c2 =

(
1 5 8 4 8 8 0 1 8 X

)
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• c3 =
(
0 2 7 3 0 8 6 7 8 2

)
• c4 =

(
0 5 8 2 0 1 8 6 1 7

)
• c5 =

(
0 8 2 8 4 0 2 6 8 X

)
• c6 =

(
3 5 4 0 5 2 0 0 0 7

)
• c7 =

(
3 5 4 0 1 3 6 1 6 9

)
• c8 =

(
0 4 1 2 0 7 3 3 1 5

)
• c9 =

(
0 4 1 2 4 0 6 5 0 0

)
lead to the generator matrix

G9 =



0 4 7 1 9 9 4 6 2 6
1 5 8 4 8 8 0 1 8 X
0 2 7 3 0 8 6 7 8 2
0 5 8 2 0 1 8 6 1 7
0 8 2 8 4 0 2 6 8 X
3 5 4 0 5 2 0 0 0 7
3 5 4 0 1 3 6 1 6 9
0 4 1 2 0 7 3 3 1 5
0 4 1 2 4 0 6 5 0 0


.

Thus, we set

BKer(G9) =





4956618
1567405−16299307
4702215−2008273
4702215
13694644
4702215
138398
313481
54157
313481
4942513
4702215
123817
1567405−1774413
1567405

1


≡



X
9
8
7
6
5
4
3
2
1





.

It follows that

H =
(
X 9 8 7 6 5 4 3 2 1

)
,

as otherwise rank(H) would be zero which would contradict the error-detection property
of the ISBN code.
One may recall that we can find an equivalent code by using Gauss-elimination. If we
multiply the row by 10 we receive the equivalent parity-check matrix

Ĥ =
(
1 2 3 4 5 6 7 8 9 X

)
.

This is the parity-check matrix of the ISBN code. Hence by applying Gauss-eliminations

G9 = G.
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This experiment took 15 ISBN code words to execute, 6 of which were in the Kernel of a
Gi with i < 9. This experiment shows us that it is possible to reverse-engineer a linear
code assuming one has access to a great amount of code words. Knowing the d of the
linear (n, k, d)-code could also be helpful. We now demonstrate why.

Proposition 5.1.
If d, the minimum distance of C, is known one can find H in one step.

Proof.
We know that the minimum distance of code C is d if and only if any d − 1 columns of
the parity-check matrix are linearly independent but d are linearly dependent.
From d = 2 one one can deduce that rank(H)=1. Next we make a matrix with at least
9 code words and perform Gauss-eliminations on it. One then adds code words until our
matrix has rank 9. Any vector spanning the kernel then is the parity-check matrix of the
ISBN code. □

We now demonstrate this using completely different ISBN code words.
We take the code words:

• c1 = 3540069607
• c2 = 3540069038
• c3 = 0387069038
• c4 = 3540068600
• c5 = 0306449641
• c6 = 0471540250
• c7 = 3540902260
• c8 = 0387902368
• c9 = 052170040X

Next we denote with G the potential generator matrix consisting of row-vectors c1, ..., c9
and check its rank. If the rank equals 9 it is indeed a generator matrix of the ISBN code.

G =



3 5 4 0 0 6 9 6 0 7
3 5 4 0 0 6 9 0 3 8
0 3 8 7 0 6 9 0 3 8
3 5 4 0 0 6 8 6 0 0
0 3 0 6 4 4 9 6 4 1
0 4 7 1 5 4 0 2 5 0
3 5 4 0 9 0 2 2 6 0
0 3 8 7 9 0 2 3 6 8
0 5 2 1 7 0 0 4 0 X


One can see that Rank(G) = 9, hence it is a generator matrix of our code. Since the rank
is full we know that the vector y spanning the kernel is simultaneously the desired parity
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check matrix, that is

y =





2351
91−7454
273−227
39

1801
273
6379
273
5651
182
−7
−8
−49
3
1


≡



1
2
3
4
5
6
7
8
9
X




It follows that

H =
(
1 2 3 4 5 6 7 8 9 X

)
.

After having reverse-engineered the ISBN code we give the reader some additional
information about it.

• From the ISBN’s parity-check matrix it follows that

c1 + 2c2 + 3c3 + 4c4 + 5c5 + 6c6 + 7c7 + 8c8 + 9c9 + 10c10 ≡ 0 (mod 11).

• The ISBN code is a single error detecting code. Indeed by Theorem 3.6, a code C
can detect up to s errors in any code word provided d(C) ≥ s + 1, where d(C) is
the minimal distance and correct up to any t errors provided d(C) ≥ 2t+ 1.

• The ISBN code can detect a double permutation error. Indeed, if the above holds
then for

c1 + 2c2 + ...+ ici + jcj + ...+ 10c10 ≡ 0 (mod 11)

any equation of the form

c1 + 2c2 + ...+ jci + icj + ...+ 10c10 ̸≡ 0 (mod 11)

does not hold (assuming ci ̸≡ cj). This can be proven easily by assuming both are
equivalent to zero and subtracting the second equation from the first. One is left
with

(ici + jcj)− (jci + icj) ≡ 0 (mod 11).

Making use of the distributive law we get

(ci − cj)(i− j) ≡ 0 (mod 11).

This is clearly a contradiction as ci − cj ̸≡ 0 and i− j ̸≡ 0 (mod 11).
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6. The IBAN Experiment.
In this chapter we present the IBAN code. To do this we make use of p-adic numbers
during the breakdown of this code as they allow us to determine validity of an IBAN in a
quick glace. The following chapter is divided into three subsections: in the first we take a
look at the significance of IBAN numbers, in the second there is a extensive introduction
to p-adic numbers and finally, in the third, the IBAN code is explained to the reader. We
also note that the IBAN has similarities to one of the most used codes in the world, the
Cyclic-Redundancy-Check code.

6.1. The significance if IBAN. [Wik23a]
IBAN stands for International Bank Account Number. IBANs were introduced as a means
to ease the identification of international bank accounts and facilitate international trans-
actions. Additionally the IBAN system reduces the risk of transcription errors.
IBANs vary depending on country:

• In Switzerland an IBAN number consists of 21 characters, the first two of which
are the country code CH. The following 19 are digits resulting in a Swiss IBAN
number being of the form

CHcc bbbb baaa aaaa aaaa a,

where the c’s are check digits,the b’s are the clearing number and the a’s the
account number. For example a Swiss account with the account number 5266
7129 0032 has an IBAN of the form CHcc bbbb b526 6712 9003 2). Note that
the number bbbbb identifies the financial institute in which the account number
aaaaaaaaaaaa lies.

• French IBANs are constructed differently. They consist of 27 characters, where
the first two are the letters FR. The next 25 characters are numeric. A French
IBAN is of the form

FRcc bbbb bsss ssaa aaaa aaaa axx,

where the c’s are the check digits, the b’s the clearing number, the s’s from the
code guichinet, the a’s the account number and finally the x’s the national check
digits.

The fact that a “reduced risk of transcription errors” is mentioned leads us to believe that
coding theory is involved in the way the IBANs were set up.

6.2. P-adic Numbers.
In Subsection 6.1 the construction of a Swiss IBAN was almost fully explained. The key
part that was left out: the check digits. These vary from number to number and will
be further addressed in Subsection 6.3. This subsection is for the reader unfamiliar with
p-adic numbers as they will also be of importance in Subsection 6.3.
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6.2.1. What is a P-adic Number?

Example 6.1.
41 can be written as a polynomial a0 + a1x

1 + a2x
2 + ... evaluated at x = 5 with all ai

chosen such that 0 ≤ ai < p for all i ∈ I,

41 = 1 · 52 + 3 · 51 + 1 · 50.
Hence 41’s 5-adic representation is 131.

The example above is easily understood as 41 = 1 + 3 · 5 + 52 and there isn’t that much
left to ponder about. −1 on the other hand is much harder, as this cannot be denoted as
a finite sum like 41 can (see full example below).

In general we write a p-adic number s in the form s =
∑∞

i=k aip
i, where 0 ≤ ai < p.

6.2.2. The Construction of the P-adic Numbers from the Rationals.
Before we get to the construction of the p-adic numbers from Q we must look at the p-adic
valuation and p-adic absolute value on Q as these are used in the construction proof.

Definition 6.2. (P-adic Valuation) [POM]
Define the p-adic valuation on Q as the function νp : Q → Z ∪ {∞}, where νp(x) is:

• if x ∈ Z\{0}, then it is the integer such that x = pνp(x)x′, where x′ ∈ Z, p ∤ x′ in
the case that x ̸= 0,

• νp(a)− νp(b) for any x = a
b ∈ Q (a, b are integers so do as above),

• + ∞ if x = 0.

Lemma 6.3. (P-adic Valuation Properties) [POM]
From Definition 6.2 the following properties follow for all x, y ∈ Q:

(1) νp(xy) = νp(x) + νp(y) and
(2) νp(x+ y) ≥ min{νp(x), νp(y)}.

Proof.

(1) We give no proof for part one. It follows from Definition 6.2 point one.
(2) Let x, y ∈ Z.

If x+y = 0 then νp(x+y) = +∞, which must be larger or equal to min{νp(x), νp(y)}.
In the case that x + y ̸= 0 the proof goes as follows. WLOG one may set
νp(x) ≤ νp(y). It follows that x = pνp(x)m and y = pνp(y)n, where p ∤ m, p ∤ n.
Thus

x+ y = pνp(x)m+ pνp(y)n.

As νp(x) ≤ νp(y) it holds true that pνp(x) | pνp(y). Hence

pνp(x) | x+ y

and
νp(x) ≤ νp(x+ y).
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Since νp(x) was chosen to be less or equal to νp(y), min{νp(x), νp(y)} = νp(x).
Thus the claim holds for all x, y ∈ Z.
To generalize this to all x, y ∈ Q we simply observe that any rational number can
be denoted as the fraction of two integers i.e. for x, y ∈ Q, x = a

b , y = c
d , where

a, b, c, d ∈ Z. Thus

νp(x) = νp

(
a

b

)
= νp(a)− νp(b).

Similarly one can obtain

νp(y) = νp

(
c

d

)
= νp(c)− νp(d).

WLOG we may set νp(x) ≤ νp(y). This implies that

νp(a)− νp(b) ≤ νp(c)− νp(d).

In turn this means that

νp(a) + νp(d) ≤ νp(c) + νp(b).

Recalling that νp(a) + νp(d) = νp(ad) we have that

νp(ad) ≤ νp(bc).

Similarly to the proof for integers, we can deduce the first of these inequalities
from the inequality above.

νp(ad) ≤νp(ad+ bc) (25)

νp(a) + νp(d) ≤νp(ad+ bc) (26)

νp(a) ≤νp(ad+ bc)− νp(d) (27)

νp(a)− νp(b) ≤νp(ad+ bc)− νp(d)− νp(b) (28)

(29)

Recalling that x + y = ad+bc
bd and x = a

b we can see by inequality (29) that our
claim also holds for rationals x and y.

□

We can now define an absolute value on Q.

Definition 6.4. (P-adic Absolute Value)
Using νp from 6.2, define the p-adic absolute value | · |p : Q → R≥0 by

|x|p =

{
p−νp(x) x ̸= 0,

0 x = 0.

Next we check if Definition 6.4 truly gives us an absolute value, recalling that an absolute
value | · | must fulfill four conditions:
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(1) | · | : K → R≥0,
(2) |x| = 0 if and only if x = 0,
(3) |xy| = |x||y| for x, y ∈ K,
(4) |x+ y| ≤ |x|+ |y| for x, y ∈ K.

Theorem 6.5. [POM]
| · |p from Definition 6.4 is an absolute value.

Note that instead of proving (4) we will prove a stronger property from which (4) follows.

Proof.
In this proof we show that the absolute value ||p possesses all of the properties an absolute
value must have.

(1) Let x = 0 then by definition it follows that |x|p = 0.
Let |x|p = 0 then it follows that x = 0 as py ̸= 0 for all y ∈ Z.

(2) |x|p|y|p = p−νp(x) · p−νp(y) = p−(νp(x)+νp(y)) = p−(νp(xy)) = |xy|p, for x, y ∈ Q.
(3) For x+ y = 0: |x+ y|p = 0 ≤ max{|x|, |y|}.

For x+ y ̸= 0 we can set |x|p ≤ |y|p resulting in νp(x) ≥ νp(y).

We write |x+ y|p = p−νp(x+y) and know that νp(x+ y) ≥ min{|x|, |y|} = νp(x).
It follows that |x+ y|p ≤ |x|p = max{|x|p, |y|p}.

□

The Construction of the P-adic numbers from the Rationals
The construction is divided into four small theorems in which one creates a field F with
an absolute value and a final proof in which one proves that (F, | · |p) is a metric space.
Before beginning with the first proof we define Cauchy Sequences.

Definition 6.6. (Cauchy Sequences) A sequence (an)n∈N is Cauchy with respect to an
absolute value | · | if for every ϵ ∈ R>0, there is some N0 ∈ N such that for all m,n ≥ N0

|an − am| < ϵ.

Note that

• all Cauchy sequences have an upper bound, this means that for a Cauchy sequence
(fn)n∈N and any integer i ≥ Ĉ0, where Ĉ0 is positive integer, fi < Ĉ0,

• all Cauchy sequences have a lower bound, this means that for a Cauchy sequence
(fn)n∈N and any integer i ≥ C0, where C0 is positive integer, fi > C0,

• a Cauchy sequence is a nullsequence if limn→∞ |an| = 0.

Also note that in the following theorems we heavily rely on the fact that the p-adic absolute
value is an absolute value and possesses the properties proven above. There is no need to
apply definition of | · |p to prove the theorems as they simply require the properties of an
absolute value.

Theorem 6.7.
Consider the set S = {(an)n∈N|an ∈ Q, (an)n∈N is a Cauchy sequence with respect to | · |p}.
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Then S, endowed with pointwise addition and multiplication, forms a commutative ring R
with identity.

We give our own proof.

Proof.
Let ϵ > 0 and choose N0a , N0b such that |an − am| < ϵ

2 for m,n > N0a , |bn − bm| < ϵ
2 for

m,n > N0b .

• Additive closure: Let (an)n∈N, (bn)n∈N ∈ R then

(an)n∈N + (bn)n∈N = (an + bn)n∈N.

We have that (an + bn)n∈N ∈ Q for all n. (an + bn)n∈N is also Cauchy because for
m,n chosen such that for m,n > max{N0a , N0b}, it holds that

|an + bn − (am + bm)| = |an − am + bn − bm| ≤ |an − am|+ |bn − bm| < ϵ

2
+

ϵ

2
.

• Additive neutral element: Let (an)n∈N ∈ R. (an)n∈N + (0, 0, 0, ...) = (an)n∈N as
we have pointwise addition from Q. All that is left to show, is that (0, 0, 0, ...) is
Cauchy, which it is because the difference of any two entries equals zero and ϵ > 0.

• Multiplicative closure: Let M be such that M > |an|, |bn| for all n ∈ N and pick
N0a , N0b such that |an − am| < ϵ

2M for all m,n > N0a and |bn − bm| < ϵ
2M for

all m,n > N0b . Let (an)n∈N, (bn)n∈N ∈ R, then (an)n∈N(bn)n∈N = (anbn)n∈N. It
is clear that ab ∈ Q.(anbn)n∈N is Cauchy because for m,n chosen such that for
m,n > max{N0a , N0b}

|anbn − ambm| =|anbn − ambn + ambn − ambm| (30)

≤|bn||an − am|+ |am||bn − bm| (31)

<M · ϵ

M
= ϵ (32)

and since (an)n∈N and (bn)n∈N are Cauchy, thus bounded it follows that (anbn)n∈N
is Cauchy.

• Multiplicative neutral element: Let (an)n∈N ∈ R then (an)n∈N · (1, 1, 1, ...) =
(an)n∈N. (1, 1, 1, ...) is Cauchy because the difference of any two entries equals
zero and is smaller than any ϵ > 0.

• The additive and multiplicative inverses, as well as commutativity, associativity
and distributivity, all follow from pointwise addition and multiplication and that
all entries lie in Q.

□

Theorem 6.8.
The nullsequences of the ring R form an ideal I.

We give our own proof.

Proof.
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• Let (an)n∈N, (bn)n∈N ∈ R be nullsequences. It follows that

lim
n→∞

(an + bn) = lim
n→∞

(an) + lim
n→∞

(bn) = 0.

Hence the sum of two nullsequences is also a nullsequence and in I.
• Let (an)n∈N ∈ R with upper bound be a nullsequence and (bn)n∈N ∈ R have the
upper bound M . Then

lim
n→∞

(anbn) = lim
n→∞

(an) ·M = 0 ·M = 0.

□

Theorem 6.9.
R/I is a field.

We give our own proof.

Proof.
Take any non null-sequence (an)n∈N ∈ R. This means an ̸∈ I.
We know that since (an)n∈N is not a null-sequence there can only be a finite number of
ai’s where ai = 0 and that after some Z0 ∈ N every entry is non-zero.
Hence we can construct a null-sequence (bn)n∈N, where{

bi = 1ifai = 0,

bi = 0 else.

It follows that the sequence (cn)n∈N = ( 1
an+bn

) is well-defined, that is to say there is no

entry ci where ai + bi = 0 giving us 1
0 .

To show the sequence (cn)n∈N is Cauchy we must prove that ∃N ∈ N, such that for

m,n ≥ N,

∣∣∣∣ 1

an + bn
− 1

am − bm

∣∣∣∣ < ϵ

for any ϵ ∈ R>0. This holds because

∃N0 ∈ N such that for any m,n ≥ N0, it holds that|an − am| < ϵ′,

where ϵ′ ∈ R>0 and because ∃Z0 as above. Finally one may recall that Cauchy sequences
have an upper and lower bound, i.e. for any n ≥ C ∈ N it holds that A < an < B, where
A,B ∈ N. We choose m and n to be greater than N0, C0 and Z0.∣∣∣∣ 1

an + bn
+

1

am + bm

∣∣∣∣ ≤ |an − am|+ |bn − bm|
|anam + bnam + bman + bnbm|

≤ |an − am|
|anam|

< ϵ′ · 1

A2
.

We may take

ϵ =
ϵ′

A2

and conclude that (cn)n∈N is in fact a Cauchy sequence.

Now one may observe that (an)n∈N · (cn)n∈N = (111...1...) + (b̂n)n∈N, the multiplicative
identity and a null-sequence. Since we chose (an)n∈N as any non-zero Cauchy sequence it
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follows that one could similarly find an inverse to any other sequence in R/I. Hence every
element in R/I is a unit making R/I a field. □

Theorem 6.10.
One can extend the absolute value | · |p to one on F as follows:
Let a ∈ F, set |a| := limn→∞ |an|, where a = (an)n∈N + I.

Proof.

• a = 0, then limn→∞(an)n∈N = 0. It follows that |a| = 0.
|a| = 0 implies that (an)n∈N ∈ I, thus a = 0 over F = R/I.

• For x, y ∈ F it holds that

|xy| = lim
n→∞

(xnyn) (33)

= lim
n→∞

(xn) · lim
n→∞

(yn) (34)

=( lim
n→∞

(xn)) · ( lim
n→∞

(yn) (35)

=|x||y| (36)

• For x, y ∈ F:
|x+ y| = lim

n→∞
(xn + yn) (37)

= lim
n→∞

(xn) + lim
n→∞

(yn) (38)

=|x|+ |y|. (39)

The triangle equality follows.

□

We introduce two definitions of metric spaces.

Definition 6.11. (Metric Space) [Wik23b]
A metric space is a pair (X, d) where X is a set and d : X ×X → R≥0 is a metric, that
is, for all x, y, z ∈ F:

(1) d(x, y) = 0 if and only if x=y,
(2) d(x, y) = d(y, x),
(3) d(x, z) ≤ d(x, y) + d(y, z).

Definition 6.12. A metric space X, together with a distance function d(X, d) is complete
if every Cauchy sequence of points in X has a limit in X.

Using the definitions above we show that (F, d) is a metric space.

Theorem 6.13. [POM]
F, constructed in Theorem 6.9, together with d, defined such that d(x, y) = |x − y|p, is a
metric space.
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Proof.

(1) If d(x, y) = 0 then |x− y|p = 0 and this is only the case if x− y = 0.

(2) d(x, y) = p−νp(x−y). We know that

νp(x− y) =νp((−1)(y − x)) (40)

=νp(−1) + νp(y − x) (41)

=νp(−1) + νp(y − x) (42)

=νp(y − x) (43)

as νp(−1) = 0 since p is prime.
Hence

d(x, y) = p−νp(x−y) = p−νp(y−x) = d(y, x).

(3) It holds that

d(x, z) =|x− z|p (44)

=|x− y + y − z|p (45)

≤|x− y|p + |y − z|p (46)

=d(x, y) + d(y, z). (47)

(48)

□

One can proceed to prove that (F, d) is complete but we omit this.

Example 6.14. (Elaborate Example)
We finish the subsection on p-adic numbers with an example of our own, in which we wish
to find the 5-adic representation of −1.
We begin with two observations:

(1) limn→∞ |pn|p = 0.
This follows because limn→∞ |pn|p = limn→∞

1
pn = 0.

(2) We use that (x− 1)(xk−1 + ...+ x2 + x+ 1) = (xk − 1).
To find the 5-adic representation of −1 we use observation (1) and obtain

lim
j→∞

5j − 1 = −1.

Next, one applies observations (2) to get the equation

lim
j→∞

4

j−1∑
i=0

5i = lim
j→∞

(5− 1)

j−1∑
i=0

5i = lim
j→∞

(

j∑
i=1

5i −
j−1∑
i=1

5i = lim
j→∞

5j − 1 = −1.

Hence the 5-adic representation of −1 is

...444.
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6.3. The coding theory of IBAN.
In this subsection we build off the results and observations in the previous two subsections
and show that the IBAN code is non-linear and single error correcting.

6.3.1. Why the IBAN code is not linear. [Wik23a]
In this experiment the goal was to reverse engineer the IBAN code. To do this we had to
first gather information about said code. We found that given an IBAN number

CHcc bbbb baaa aaaa aaaa a,

one can

(1) permute the code such that after permutation it has the form bbbb baaa aaaa aaaa aCHc c,
(2) turn the alphanumeric code into a numeric one by decoding

a = 10, b = 11, c = 12, ..., z = 25,
(3) and observe that the newly obtained integer over Z/97Z sits in the equivalence

class of 1.

Thus the IBAN code is non-linear, as the IBANs lie in a coset of Z/97Z, which is not a
subvectorspace. This is clear because 0 is not in it. If we take a step back and consider
the build of an IBAN it makes sense that the code is not linear. Below we illustrate why
even if every IBAN were in the ideal 97Z the IBAN code would not be linear.
Before we begin explaining why finding a generator matrix is impossible we note that a
PDIBAN is an IBAN post permutation and decoding of letters.

• It is impossible to find a generator matrix because the way PDIBANs are built,
digits 6,5,4 and 3 counting from right to left are the decoded letters. Hence if we
add one Swiss IBAN to another and assume that the addition of the check digits
does not carry a one into the third digit, the digits will be 2434. If we were to
try and translate this back to a country code we would get O,Y. As no country
that uses IBANs has the country code OY, we conclude that the sum of two Swiss
PDIBANs is not a Swiss PDIBAN or even an PDIBAN at all and the code is not
linear, hence one cannot find a generator matrix.

• The 23-digit number that lies in the ideal 97Z and has a zero as its sixth digit is
not an PDIBAN, as there is no letter that decodes to 0x for any positive integer
x.
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6.3.2. The IBAN code.
Now that we’ve argued why the choice of a linear code is not fitting, we go back to the
algorithm provided to us by Wikipedia that is denoted above.
If any IBAN (post permutation and decoding of the letters) must be equivalent to one
modulo 97 it means that any IBANs 97-adic representation begins with a one (recall p-adic
numbers are infinite towards the left).
This allows us to set up a theorem, that claims that the IBAN is a single error detecting
code.

Theorem 6.15.
The IBAN code is a single error detecting code.

Proof.
Let c = c1c2...c23 be a Swiss IBAN (post permutation and decoding of letters).
It follows that the 97-adic representation of

c = a1297
12 + a1197

11 + a1097
10 + ...+ a197 + 1

is as follows
a12a11a10...a11,

where each ai for i = 1, ..., 11 is a number between zero and 96 and a12 is either zero or
one (note that 9713 has more than 23 digits). If a single error of magnitude y ∈ {1, ..., 9}
is made in position x(counting right to left) this results in the addition of ±y10x−1 to c.
Instead of doing this we look at the 97-adic representation of ±y10x−1 and realize that it
never ends in a zero. Hence if we add it to the 97-adic representation of c, we know that
the error will be detected.
We show that the code is not double error correcting with a counterexample.
c = 30000001156819940121797 is an IBAN (post permutation and decoding of letters)
and e = 30000001156819940121894 the denotation of c, where two errors have occurred
in positions 1 and 3 (counting from right). Notice, without even calculating the 97-adic
representations of c and e that they both have a one as their leftmost digit. This is obvious
for c as c is an IBAN and follows for e due to 100− 3 = 97. So no error is detected.

□

Remark 6.16. We insert this remark during preparation for the presentation of this paper.
It has become evident that the proof given above is incomplete. We simply have proven
that every single error in the PDIBAN is detected. False transcription of the country code
of the IBAN however causes a double error. To conclusively prove that this double error
in the PDIBAN is found we must show that a double error caused by false transcription
of a country code letter is detected.
We recall that a double error in positions x, x̂ with magnitudes y, ŷ would result in the
addition of ±y10x−1 and ±ŷ10x̂−1 to the PDIBAN.
Also recalling the way the country code letters decode to numbers (A=10, B=11,..., Z=35)
we notice that, assuming x > x̂, x = x̂+ 1. We also see that y ∈ {1, 2} and ŷ ∈ {1, ..., 9}.
As none of the possible sums of ±y10x−1 and ±ŷ10x̂−1 lie in the ideal 97Z we conclude
that the p-adic representation of the sum of ±y10x−1 and ±ŷ10x̂−1 has a non zero a0
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coefficient and that the p-adic representation of the erroneous PDIBAN does not begin
with a 1 (that is begin from the right). Thus the theorem holds.
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7. Constructing a Hash-Function.
In the final chapter of this project we design a hash-function. The reason for the devel-
opment of a new hash-function was the lack of second pre-image resistance of the second
hash-function example in the Subsubsection 4.5.1.
First we recall the definition of a hash-function:

Definition 7.1. (Hash Functions) A hash function is an algorithm that maps a binary
string of arbitrary length to a binary string of fixed length of n-bits. This function must
also be:

• collision resistant
• pre-image resistant,
• second pre-image resistant,
• computable in almost linear time.

Note that a function f being collision resistant if it is hard to find two inputs D1, D2

such that f(D1) = f(D2). A function f is pre-image resistant if it is hard to find the
input D from f(D) alone for any input D. A function is second pre-image resistant if
given f(D1) for any input D1 it is hard to find an input D2 such that f(D1) = f(D2)
(we see that if a function is not second pre-image resistant it is automatically not collision
resistant).

In the hash-function we give below, focus was put on the properties of pre-image resis-
tance and second pre-image resistance. Computational efficiency was completely neglected
and although we hope the function is collision resistant we did not manage to prove it or
find experimental evidence. One somewhat unorthodox specification of this hash-function
is that one must also include a secret integer N , the product of two large primes. The
last step we must take before getting to the hash-function itself is to consider the pseudo-
random generator G, which we constructed. The algorithm G uses the secret integer N
mentioned above and calculating G(k) works as follows:

(1) Let k = k1...kn, where ki ∈ {0, 1} for all i = 1, ..., n. One takes the number whose

binary representation is k to be k̂.
(2) In order to compute G(k) one first computes y1, ..., yn as follows:

y1 ≡ k̂2 (mod N),

yi+1 ≡ y2i (mod N).

(3) Next we write the yi’s in their binomial representation as bit strings, extend them
by n zeros and compute h(yi) for every i = 1, ..., n, where h is the “bad hash”
mentioned in Subsubsection 4.5.1 that simply chops off any bit after the 2n’th bit.

(4) Finally one has G(k) = r = h(y1)⊕ ...⊕ h(yn).
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Our own Hash-Function
Consider the algorithm H, a document of arbitrary length D and a bit string k of length
n that can be public. H runs as follows:

(1) D is extended by adding 0’s to the end of it until it has length s · n, where both
s, n ∈ N. Note that n will be the final length of H(D) once computed and s is
just some integer that varies depending on the length of D such that s · n is the
nearest multiple of n to the length of D.

(2) Concatenate D = d1d2...dsn such that D = h1 ∥ h2 ∥ ... ∥ hs, where all hi for
i = 1, ..., s have length n.

(3) Compute Hi for each hi for i = 1, ..., s.
Hi = fk(x1, ..., xn)⊕ hi, where hi = x1x2...xn.
One views fk(x1, x2, ..., xn) as the pseudo-random function constructed by Goldre-
ich, Goldwasser and Micali in 1986. We use the the PRG G, defined above and
define G0(k) and G1(k) to be the left and right halves of the bit string generated
by G(k) for some k. Both G0(k) and G1(k) have length n.

G(k) = G0(k) ∥ G1(k).

Now define fk(x1, ..., xn) to be Gxn(...(Gx2(Gx1(k)))).
(4) The final output H(D) is then given to us by

H(D) = H1 ⊕ ...⊕Hn.

We give a few examples of possible attacks on first pre-image and second pre-image. Again
we did not manage to prove or find experimental evidence that the hash-function is in fact
first pre-image and second pre-image resistant. In this paper we simply present our own
hash-function, study some known attacks and argue why they are ineffective.

Example 7.2. (Second Pre-Image Attack 1)
Attack the second pre-image by inserting D = 111...1.
It follows that all hi are equal, making all Hi equal. If the number of Hi’s, so essentially,
s is odd

H(D) = 111...1︸ ︷︷ ︸
n 1’s

⊕fk(x1x2...xn).

A problem of the second pre-image security of this hash-function would be choosing large
primes p, q such that their product is greater than y2n−1. This would mean all the yi’s
modulo N and without modulo would be identical. So N could be neglected and an
attacker would know what fk(z1, ..., zn) is for zi ∈ {0, 1}. Hence by trial and error one

could find a ĥ = z1...zn such that fk(z1...zn) ⊕ ĥ = H(D). Then one could let D = ĥ ∥
111..1 ∥ 111...1 ∥ .... This D would be a second pre-image.
We conclude from this example that the choice of p and q is not to be taken lightly.

Example 7.3. (Second Pre-Image Attack 2)
By inserting the same sequence of n zeros and ones, x1...xn, s times (where s is an odd
number) we can find fk(x1, ..., xn)⊕x1...xn and obviously fk(x1...xn) itself. Hence someone
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could make a database of different hi’s and their resulting Hi’s which would allow a user
to quickly come up with a second pre-image.
This serious issue can be combated by generating multiple k’s. That way if we insert the
same sequence x1...xn s times we don’t get H(D) = fk(x1...xn) ⊕ x1...xn outputted, as
the fk(x1...xn) vary.
To generate multiple k’s, let’s call them k1, ..., kn one uses the k embedded in the function
and lets

ki ≡ k2
i

(mod N).

Note that the binary representation of every ki doesn’t have to be of length n as we use
the “bad hash” later in the PRG.

Remark 7.4. (Pre-Image Resistance)
Finding a pre-image from H(D) is difficult as it would involve first finding the Hi’s (pre-
sumably). The brute-force algorithm for this alone runs in an exponential time complexity.

Proof. (Time Complexity of Brute-Force Algorithm)
Let A = a1, a2, ..., ak;B = b1, b2, ..., bk;C = c1, c2, ..., ck), where ai, bi, ci ∈ {0, 1} and finally
let A = B ⊕ C. Assume a1 = 1. It follows that b1 = 1, c1 = 0 or b1 = 0, c1 = 1. We take
it that A is known to an attacker. If the attacker wishes to find B and C by brute-force
(so by trying every option) they would have to go through up to 2n possibilities.
Hence it is hard for an attacker to get the Hi’s by trying every possibility of H(D) =
H1 ⊕ ...⊕Hs as H(D) = (H1 ⊕ ...⊕Hs) can be written

H(D) = (((H1 ⊕H2)⊕H3)...⊕Hs−1)⊕Hs

giving us a similar problem to the one above with A,B and C, the core difference being
that there are more possibilities. Instead of there being 2n different options there are now(

s!
k!(n−k)!

)n
possibilities, where for s an odd number k must be chosen as any odd number

between 1 and s, and for s an even number k must be chosen as any even number between
1 and s.
We conclude that the brute-force algorithm to find the Hi’s from H(D) does not run in
polynomial time. □
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