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1 Introduction

When Deep Blue defeated the acting chess world champion Garry Kasparov in
1997, chess AIs became central to the chess world. Unbeatable for human players,
they strongly influence the playing style of chess masters today and they are still
being developed: every year, the best chess engine is determined at the TCEC (Top
Chess Engine Championship). Last year, an interesting development occurred: for
the first time, a chess engine based on neural network technology — Leela Chess
Zero — won the TCEC while Stockfish, the winner of the last few years, only ranked
second (Monokroussos, 2019).

A few months before, Google Deepmind’s AlphaZero — also a neural network AI
— had already defeated Stockfish, though in arguably unfair conditions (DeepMind
and University College London, 2018). Since then, I’ve always asked myself how
chess engines work and how hard it would be to code one myself.

There are two approaches to coding chess AIs: using neural networks like Al-
phaZero or with algorithms that already existed in the fifties — like Stockfish or
Komodo. These algorithms make use of search trees, α–β pruning and heuristic
evaluation algorithms. I decided to code a chess AI using the Stockfish-like ap-
proach because coding a neural network certainly would have blown the frame of a
matura thesis.

As an hommage to Stockfish, I baptized my own chess engine Mockfish.

1.1 My question

Am I capable of programming a chess AI that can defeat me as a human player?

1.2 Prerequisites for understanding this report

To understand every part of this report, you only have to know the chess rules (in-
cluding en passant captures, pawn promotion and castling) as well as a fundamental
understanding of programming. This includes arrays, functions and object-oriented
programming.
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2 The work process

2.1 May and June 2019: Mockfish 0.1

I started using the name Mockfish starting with the second version of my chess
engine, so this version is called 0.1 instead of 1.0. It included an advanced GUI and
though it was possible to play a real game against it, it still was very inefficient: since
I hadn’t separated the frontend (graphics) from the backend (position evaluation),
this version has severe performance issues that I couldn’t get rid of without totally
rewriting the application.

2.2 July and August 2019: Mockfish 1.0

The second version didn’t use more advanced chess programming theory than ver-
sion 0.1, but its code was more orderly and the back- and frontend, which was now
greatly simplified, were separated. While the performance benefit wasn’t great, at
least it ran more stably and produced slightly better results than Mockfish 0.1.

2.3 September 2019: Mockfish 2.0

The first real performance improvement came with Mockfish 2.0: it used a modern
approach to board representation and it made use of concepts like bitwise operators
that enhanced performance. However, it still experienced the problem that the two
key elements — tree expansion (section 3.3) and the α–β algorithm (section 3.6) —
were separated, something that reduced performance somewhat.

2.4 After September 2019: Mockfish 2.1

What reduced computation time to 1% of Mockfish 2.0 were three new core ideas:
sorting the search tree (section 3.7.1), dividing up the evaluation into several threads
(section 3.7.2) and directly connecting the tree expansion and the α–β algorithm.
While Mockfish 2.1 still cannot compete with professional chess engines, it is capable
of defeating inexperienced chess players with relative ease.
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3 How does a chess AI work?

There are different approaches to chess AIs. As mentioned on page 1, there are
neural networks and algorithms. (In the future, I’ll call the first ”AI” and the latter
”engine” to distinguish between them.) I’ll only go into chess engines because neural
networks function in a completely different way.

For a chess engine, several distinct parts have to work together perfectly so that
you don’t end up with annoying bugs. I’ll discuss the most important ones.

3.1 Board representation

This is the heart of every chess application. Having an efficient board representation
is vital for good performance, and there are dozens of different board representation
types to choose from (piece lists, piece sets, 0x88 and bitboards just to name a few).
I’ll only analyze the types that I used in the different versions of Mockfish.

To compare the different board representation types, I’ll use an empty board
except for a white knight on h2 in the following sections.

3.1.1 Mockfish 0.1

The most intuitive idea is to use a two-dimensional array with 8 elements in both
dimensions — like this:

// 8*8 array

char *board[8] = {

{’-’,’-’,’-’,’-’,’-’,’-’,’-’,’-’},

{’-’,’-’,’-’,’-’,’-’,’-’,’-’,’-’},

{’-’,’-’,’-’,’-’,’-’,’-’,’-’,’-’},

{’-’,’-’,’-’,’-’,’-’,’-’,’-’,’-’},

{’-’,’-’,’-’,’-’,’-’,’-’,’-’,’-’},

{’-’,’-’,’-’,’-’,’-’,’-’,’-’,’-’},

{’-’,’-’,’-’,’-’,’-’,’-’,’-’,’N’},

{’-’,’-’,’-’,’-’,’-’,’-’,’-’,’-’}

};

This does seem like a good idea. However, it is very inefficient for two reasons:

• Checking whether a coordinate exists on the board is not very efficient because
both two coordinate elements have to be checked. Only if the x and the y
coordinate are both ≥0 and <8 does a square exist on the board.

• Accessing a single element is also slower than with a one-dimensional array
since the computer internally has to make a multiplication — something that
wouldn’t be necessary with a one-dimensional array. The computer has to do
that because a two-dimensional array isn’t actually stored in two dimensions
but rather in one. This is done because the processor cannot handle two-
dimensional objects. The only purpose of multidimensional arrays is making
it easier for the human user to read, understand and manipulate matrices. For
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accessing our knight on h2, the computer has to do the following operation:
board[6][7] → (internal) board[6*8 + 7] = board[55]. Of course, one
single multiplication doesn’t measurably slow down the program. However,
just to calculate all legal moves, elements of the board array have to be ac-
cessed hundreds, if not thousands, of times. And since the calculation of legal
moves is done tens of thousands of times again when evaluating a position,
the tiny performance issues pile up until they make a great difference.

3.1.2 Mockfish 1.0

For the second version, I rewrote the board representation as a one-dimensional
array with 64 elements. For the following two elements in the same rank at the
positions r1 and r2 and the elements with the positions f1 and f2 in the same file,
the following rules apply: ⌊r1

8

⌋
=

⌊r2
8

⌋
(1)

f1 (mod 8) = f2 (mod 8) (2)

Such an array looks like this:

// 64 array

char board[] = {

’-’,’-’,’-’,’-’,’-’,’-’,’-’,’-’,

’-’,’-’,’-’,’-’,’-’,’-’,’-’,’-’,

’-’,’-’,’-’,’-’,’-’,’-’,’-’,’-’,

’-’,’-’,’-’,’-’,’-’,’-’,’-’,’-’,

’-’,’-’,’-’,’-’,’-’,’-’,’-’,’-’,

’-’,’-’,’-’,’-’,’-’,’-’,’-’,’-’,

’-’,’-’,’-’,’-’,’-’,’-’,’-’,’N’,

’-’,’-’,’-’,’-’,’-’,’-’,’-’,’-’

};

Finding out on which rank a certain number is can be done with the follow-
ing function: int GetRank(int num) { return num / 8; }; while finding the
file can be done with int GetFile(int num) { return num % 8; }. Thus, this
type of board representation works the same way as the internal board of the two-
dimensional array described in the section 3.1.1 on page 3.

This seems more efficient since it at least uses only one dimension, but it isn’t
really that much faster because of one problem: testing whether something is on the
board or not becomes now even more complicated: since moving one step to the right
from our knight (to the imaginary square i2) results in stepping from board[55] to
board[56], and this doesn’t seem to cause a problem at all: board[56] stands for
square a1. However, this is not what we intended to achieve and thus shouldn’t be
allowed. That’s why before testing, the coordinates have to be split up in X and
Y coordinates which makes the entire calculation much more time-consuming than
before. For example, to test if the move from our knight’s coordinates to the right
would be legal can be done in the following way:
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int position = 55;

int X = GetFile(position), Y = GetRank(position);

if (OnBoard(X + 1, Y))

; // it is a legal move

3.1.3 Mockfish 2.0

This version finally used a more efficient, modern approach to board representation.
I decided to use the so-called 12×10 array because it is still quite close to an actual
chess board while other approaches to board representation like bitboards are rather
abstract. This type of array uses a chess board and a frame of hypothetical squares
around it — two ranks on the top and the bottom, respectively, while the left
and the right side have one hyptothetical file. The entire board is stored in a
one-dimensional array:

// 12*10 array

char board[] = {

’*’,’*’,’*’,’*’,’*’,’*’,’*’,’*’,’*’,’*’,

’*’,’*’,’*’,’*’,’*’,’*’,’*’,’*’,’*’,’*’,

’*’,’-’,’-’,’-’,’-’,’-’,’-’,’-’,’-’,’*’,

’*’,’-’,’-’,’-’,’-’,’-’,’-’,’-’,’-’,’*’,

’*’,’-’,’-’,’-’,’-’,’-’,’-’,’-’,’-’,’*’,

’*’,’-’,’-’,’-’,’-’,’-’,’-’,’-’,’-’,’*’,

’*’,’-’,’-’,’-’,’-’,’-’,’-’,’-’,’-’,’*’,

’*’,’-’,’-’,’-’,’-’,’-’,’-’,’-’,’-’,’*’,

’*’,’-’,’-’,’-’,’-’,’-’,’-’,’-’,’N’,’*’,

’*’,’-’,’-’,’-’,’-’,’-’,’-’,’-’,’-’,’*’,

’*’,’*’,’*’,’*’,’*’,’*’,’*’,’*’,’*’,’*’,

’*’,’*’,’*’,’*’,’*’,’*’,’*’,’*’,’*’,’*’

};

It is much easier to test if a square doesn’t exist when those hypothetical squares
(like i2) actually exist in the board array. Moving one to the right from h2 would
result in moving from board[88] to board[89] = ’*’1 which is out of the board
(from now on to be called OOB). Hence, to check whether an accessed square
exists, not its coordinates but its contents have to be checked: if it is an OOB
square, it simply doesn’t exist. The almost doubled size of the board array doesn’t
really matter since storage space isn’t a problem nowadays.

The knight is the reason why the left and the right side only have one imaginary
file while there are two each on the top and on the bottom. Since from one of the
border squares, it can reach squares two ranks or two files away from the real chess
board, two extra ranks are necessary. Because the array is also one-dimensional, it
is actually an illusion that there is only one file per side: when one move passes the

1To move to the right, you have to add 1 to your position (88 in the example) for every square.
To move to the left, you have to subtract one. However, to move upwards or downwards, you have
to subtract 10 or add 10, respectively.
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right border, its target square is just moved to the left hypothetical file, but it does
still land on an OOB square. Figure 1 on page 6 explains this in more detail.

Mockfish 2.1 uses the same board representation.

Figure 1: This picture illustrates how the 10×12 array allows to store the entire board in a one-
dimensional array: since a knight move is composed of a horizontal component (+1 or -1 per
square) and a vertical component (+10 or -10 per square), we can compose the following moves:
One square up and two to the left results in -12. This is the square f3. One down and two to
the right corresponds to +12. This is a hypothetical square with the OOB flag, so it is an illegal
move. Note that this OOB square is in the hypothetical file to the left of the board because it
passed the right border of the OOB frame. The third move shown in this figure (two down, one
to the left) results in +19. This, too, is an OOB square and hence cannot be accessed.

3.1.4 Square representation

To represent a square, I used a very naive approach in version 0.1: a string with two
elements — one to indicate the color of the piece and one to indicate its type. For
example, a white knight would be "wN", a black queen "bQ" and an empty square
"**".
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For version 1.0, I reduced this to a single character: capital letters represent the
white pieces, a single asterisk empty squares and a small letter the black pieces.

However, there is a more efficient way to tackle square representation and that
is splitting a single byte into different bits that have different roles.

Bits 7-6 Bit 5 Bit 4 Bit 3 Bits 2-0
unused color en passant flag castle flag piece type

This way, more information can be stored without losing performance — castling
and en passant rights had to be stored in separate variables in the position object2

before.

3.2 Move generation

Another vital aspect of chess engines is the function that generates legal moves. It is
quite a bulky function that takes up most of the calculation time used in evaluation
and if it is buggy, the entire chess program won’t correctly behave. Luckily, there
are many tools to debug the move generation function quickly — like Perft results:
Perft (PERFormance Test) is a test that creates all possible positions from a cer-
tain start position to a predetermined depth. Then, the number of all positions at
the lowest depth is taken and compared with a result table. If the results match,
the move generation function created the correct moves. The Perft results also show
how large the search tree can get with increasing depth. The following table shows
the results for the first 6 moves in the starting position:

Depth 1 2 3 4 5 6
Number of leaf nodes 20 400 8,902 197,281 4,865,609 119,060,324

There are two main ways to generate moves — a function that walks through
the position and progressively adds moves as it analyzes all the pieces as well as
a more advanced concept using so-called attack and push maps. The latter are
quite complicated and thus I’ll only go into the first approach which I used for all
Mockfish versions.

Lookup tables greatly simplify the task of generating moves because the same
steps can be re-used for all pieces (except for pawns, because they don’t follow the
normal rules). The lookup table I used in the latest version looks like this:

// move generation lookup table

int *lookup[10] = {

{},{}, // [0],[1] -> pawn has special rules, so no lookup table

{ false, -21,-19,-12,-8,8,12,19,21,0 }, // 2 - knight

{ true, -11,-9,9,11,0 }, // 3 - bishop

{ true, -10,-1,1,10,0 }, // 4 - rook

{ true, -11,-10,-9,-1,1,9,10,11,0 }, // 5 - queen

2I always used a class type to represent a position. This class type had to store every necessary
element to distinguish it from all other possible positions (such as castling rights, en passant rights,
the pieces and the board, whose turn it is and what the status of the game is (checkmate, running,
stalemate, agreed draw, etc.).
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{ false, -11,-10,9,-1,1,9,10,11,0 } // 6 - king

};

The first element of every subarray is either true or false. If it’s true then
the piece type this subarray references to moves in a ray (bishop, rook and queen).
If it is false, then the piece can only take one step in every direction that it can
move to (knight and king). The other elements indicate the possible directions in a
12×10 board type. Those numbers are derived from the four basic rules: +1 for a
square to the right, -1 to the left; +10 for a square down, -10 upwards. With those,
any move vector can be constructed. For example, the fourth knight direction (-8)
is one square up and two to the right, resulting in -10+1+1 = -8.

The reason for the zero values at the end of each sub-array is the following: when
stepping through all the possible directions for the different pieces, there needs to
be some way to stop the loop. I did this with a zero value which proved to be quite
simple. Walking through a single sub-array of lookup looks like the following:

for (int i = 1; lookup[/*PIECE*/][i]; i++) {...}

There is another element that I first implemented in version 2.1 that speeds up
move generation a bit: by separating the move generation for positions that are in
check and such that aren’t, some parts of the complete move generation don’t have
to be executed:

• Ray pieces and testing for check: If the moving color’s king isn’t in check,
only the first move of a ray3 piece in every direction has to be tested for a
discovered attack on its own king. This is thanks to the fact that a ray piece
can only discover a check on the king if the first move in a certain direction
does so; and subsequently, all further moves in the same direction cannot
result in an attack on its own king if the first one didn’t. However, if the
moving player is in check, every move in every direction with the ray pieces
have to be checked because they might block the checking piece on a square
past the first one.

• Castling and check: If the moving color’s king is checked, then castling
isn’t an option because castling is illegal for a checked king. Thus, all castling
possibilities can be disregarded if the moving color is checked. However, if the
moving color isn’t in check, of course castling has to be considered because
then it is legal.

3.3 Search tree

The search tree is a tree that contains all positions that can be reached from the
mother node with all possible legal moves up to a certain depth.

3A ray piece is a piece that can move in a straight line until it reaches the borders of the board.
The ray pieces of the original chess game are the bishop, the rook and the queen.
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The first node of a tree is called root node. The nodes that are all linked to one
node are called daughter nodes while the node from which a specific node stems
is called its mother node. The set of all nodes without daughter nodes are called
leaves. The number of different levels in the tree is called depth.

The depth of the search tree is vital for the quality of the evaluation and since
the speed at which it can be built is largely based on the efficiency of the move
generation algorithm, the latter is fundamental for the performance of the chess
engine. When the search tree is larger (an increased depth), then the engine also
reaches deeper into the position and can better estimate the consequences of every
possible move.

The search tree can be represented in different ways in the backend. Version 0.1
used a quite inefficient approach: a two-dimensional queue (std::deque) in which
every element had to manage the addresses of the different elements in the search
tree on its own — so the information basically existed twice for every node. This
reduced performance a lot and it was very error prone because the safe access to
information in the tree could never be totally guaranteed since it could have been
changed by a position type instance or in the tree itself.

In version 1.0, I used a simpler way: a single tree node only ever knew its
mother node and its daughter nodes and thus only had to manage those. To store
the mother and daughter nodes’ addresses in the position object, I used smart
pointers (std::shared ptr). This reduced performance but it guaranteed that I
wouldn’t have to deal with memory handling issues like memory leaks.

After version 2.0, I went back to normal C-style pointers, so that the position
type had the following structure:

// basic tree node class

class Node {

protected:

Node *mother;

vector<Node*> daughters;

};

// position node class

class TreePosition : public Node { ... };

3.4 Heuristic Evaluation

Heuristic evaluation is a concept fundamental to evaluating a search tree. A heuris-
tic evaluator guesses the positional value of a chess position. I’ll explain the point
behind that in the chapter about minimax on page 12.

The heuristic position evaluator (HPE) returns an estimated value from the
position and thereby considers the overall material situation, the placement of the
pieces and how they interact. Typical measurements a HPE takes are looking for
doubled pawns and checking if the king is safe.

Generally, the HPE returns a positive value if white is in a better situation, 0 if
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it’s exactly equal and a negative value if black’s position is better. If the black side
is mated, the evaluation is INT MAX; if white is mated, it’s INT MIN.

In version 0.1, I used by far the most complicated evaluator. While of course
material and the piece positioning were rated, it also checked whether the rooks
were on open files, if there were doubled pawns and if the knight was in the thick of
the battle or in a region on the board that was rather deserted. It also compared the
square colors of the remaining bishops and adjusted the evaluation accordingly4.

For the later Mockfish versions, I used massively simplified versions in order to
cut down on the time actually spent with the HPE and instead extending the search
tree which grants much better results even if that reduced the accuracy of the HPE
a bit. The new versions just evaluate the material and the piece placement, not
all the other elements of a position mentioned above. For that, I used two lookup
tables: one for the value of the pieces and one for the positional value which averages
0 and can be higher or lower, depending on how good this specific square is deemed
to be for a piece.

To show this, I’ll use two subarrays in this lookup table: one for the knight in the
opening and one for the pawn in the endgame. Note that in the descriptions of the
tables, I always used the white player’s perspective because the tables were written
from white’s perspective. In order to get black’s perspective, I used a lookup table
to reflect the values.

3.4.1 The pawn in the endgame

const int PAWN_ENDGAME[] =

{

0, 0, 0, 0, 0, 0, 0, 0,

50, 60, 65, 65, 65, 65, 60, 50,

25, 45, 50, 50, 50, 50, 45, 35,

0, 10, 20, 25, 25, 20, 10, 0,

-10, -5, 5, 10, 10, 5, -5, -10,

-15, -10, -5, -10, -10, -5, -10, -15,

-20, -15, -15, -20, -20, -15, -15, -20,

0, 0, 0, 0, 0, 0, 0, 0

};

The following are the three most important reasons that explain why the num-
bers in the lookup table are exactly the way they are:

• Encouraging pawns to capture towards the center: Whenever reason-
able, a square to the front and towards the middle of any other square has a
higher value. This encourages rim pawns to capture towards the center which
gives one more center control. Also, pawns on the a and h files are a lot

4If both teams only have one bishop left in the endgame, two cases can happen: if they are
bishops with different square colors, even an advantageous position for one player will often result
in a draw, while it can be the difference between victory and defeat if both bishops have the same
square colors. (Markushin, 2013).
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weaker than the other pawns since the opponent can force a draw more easily
against a passed pawn on the rim than against a passed central pawn. This
is why a pawn on the b file is more valuable than one on the a file on the left.

• Encouraging pawns to move forward: Usually, moving one square for-
ward for a pawn either reduces the evaluation penalty or increases its evalu-
ation bonus. This encourages the AI to select forward moves with a pawn.

• Evaluating left-behind pawns worse in the middle: Though the dif-
ference is small, it does influence Mockfish’s playing style in the endgame.
Because the central pawns exert much more control over the board than the
flank and rim pawns, advancing them is much more important. Giving a larger
penalty to left-behind pawns in the center encourages Mockfish to move them
forward and thus taking control of the center and bringing its most important
pawns closer to promotion. Not only the values in the array show this idea,
but also the number of points that can be gained from advancing a pawn on
the second rank to the fourth: On the a, b, g and h files, the benefit is 10
points. On the c and f files it’s 20 points and on the two central files even 30
points.

3.4.2 The knight in the opening

const int KNIGHT_OPENING[] =

{

-60, -55, -50, -45, -45, -50, -55, -60,

-55, -50, -45, -30, -30, -45, -50, -55,

-45, -30, -15, -5, -5, -15, -30, -45,

-25, -10, 10, 10, 10, 10, -10, -25,

-15, -5, 15, 5, 5, 15, -5, -15,

-15, 0, 20, 5, 5, 25, 0, -15,

-15, -5, 5, 15, 15, 5, -5, -15,

-25, -5, 0, 5, 5, 0, -5, -25

};

The lookup table for the knight in the opening is equally complicated as the one
for the pawn in the endgame, but makes use of completely different ideas:

• Encouraging knights to only take one single step in the opening:
Note that the squares c3 and f3 have the highest evaluation and from there, it
isn’t possible to move the knight to a square with a better evaluation. Thus,
once the knight stands on either c3 or f3, the engine usually decides against
moving it again. There are exceptions to that rule, of course — one example
being the Two Knights Defense in the Italian Game where the engine likes
the move Nf3-g5 which leads to the Fried-Liver Attack5.

• Encouraging knights to stay away from the central four squares:
The squares d4, e4, d5 and e5 are rated worse than the squares around them.
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This is because those squares are put to better use by placing pawns there to
establish a stable center and instead having the knights on f3 and c3 control
said squares which makes them much more effective. Also, while knights on
the central squares do control their potential maximum of 8 squares, those
squares aren’t on the center of the board and thus that theoretical benefit is
reduced somewhat.

• Encouraging knights to develop in the opening: The penalty for stand-
ing on the squares is almost as great as for the secondary development squares
a3 and h3. This encourages to move the knight early in the opening — op-
timally to the squares f3 and c3 which get the best evaluation. This also
encourages Mockfish to move its knights before the bishops in the opening
because they get less of a penalty for standing on the starting square. Note
that the squares d2 and e2 gain a bonus of 15 points since these are also quite
popular destinations for the knights in the opening, especially in games with
a closed pawn structure.

Now, even though the reduced accuracy of the HPE might be a problem in some
special positions, this just improves performance a great deal. Also, since I took
so many factors into account when creating the lookup tables, there isn’t much
accuracy lost — except for factors that depend on the interaction of multiple pieces
— like leaving a queen unattended attacked by a pawn generally isn’t a good idea.

Naturally, the two lookup tables (of 18 in total) don’t show all the factors that
I considered when creating those lookup tables. However, I decided to show those
two in this document because they display lots of recurring elements also found in
the other tables and because they show best the beauty of position evaluation in
Mockfish.

3.5 Minimax

Minimax is the most fundamental algorithm for evaluating a position. It uses the
concepts of the search tree and the HPE and combines them to calculate the value
of a position.

The code for the minimax function could look like the following:

// Minimax algorithm

int Minimax(int depth, Position &pos) {

if (depth == 0)

return pos.HPE();

pos.CreateDaughters();

if (pos.turn == WHITE) {

pos.eval = INT_MIN;

5The Fried-Liver attack is the exact combination of the following moves: 1. e4 e5 2. Nf3 Nc6
3. Bc4 (the Italian Game) Nf6 (the Two Knights Defense) 4. Ng5 d5 5. exd5 Nxd5 6. Nxf7.
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for (auto u : pos.daughters)

pos.eval = max(pos.eval, Minimax(depth - 1, *u));

}

else {

pos.eval = INT_MAX;

for (auto u : pos.daughters)

pos.eval = min(pos.eval, Minimax(depth - 1, *u));

}

return pos.eval;

}

The minimax code is a recursive function that steps through the tree. When it
reaches the bottom of the tree, it returns the heuristic evaluation of the leaf node.
Then, the algorithm maximizes (for the white player) or minimizes (for the black
player) the value returned by the function applied to all the position’s daughter
nodes in order to determine which position is reached when both players play the
best moves. The heuristic evaluation of this node then determines the returned
value of the node.

As a simple example: the white player has three nodes to choose from which
will return the following values: -4, 2 or 1. He’ll choose the node with evaluation
2 because it is the best result from the white player’s perspective. Had it been
black’s turn, the black player would have played the move leading to the position
with evaluation -4.

Of course, the greater the depth used, the more accurate the evaluation is. Were
the depth 17,691, then the result would be absolute: as the maximal length of a
chess game is 17,691 moves, there are no chess games after that and thus the entire
chess game could have been solved. (Labelle, 2015). As there are, however, more
different chess games than atoms in the universe, there is no definite solution to
chess that can be stored in any way (Shannon, 1950). Thus, we’ll have to be satisfied
with approximations using a depth of about 10. However, by discarding nodes that
aren’t deemed important, chess engines like Stockfish can reach depths of up to 50.
In fact, the reason why there are no known Perft results for a depth greater than
15 is because it would take days, weeks or even months to calculate them.

3.6 α–β pruning

Minimax isn’t the most efficient algorithm to evaluate a tree: there are many nodes
in the tree that don’t have any impact at all on the position’s evaluation — in
fact, all of them except for the nodes that lead to the ”minimaxed” leaf node.
However, it’s impossible to directly determine the correct leaf node without any
other comparison.

The α–β algorithm, however, finds a way to efficiently cut (prune) away nodes
that don’t have an impact on the evaluation without changing the results. This has
the potential of massively cutting down on calculation time. The big change when
comparing the α–β algorithm with minimax is the addition of two new variables
that are used within the function: alpha is the worst possible result for white while
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beta is the worst possible case for black. This means that white wants to increase
the value of alpha while it’s black’s goal to decrease beta. The main difference
between naive Minimax and α–β is that if the cutoff inequality alpha >= beta is
true, then all the following nodes in the same branch can be ignored. I’ll explain
this in more detail with figure 6 on page 17.

// Alphabeta algorithm

int Alphabeta(int depth, Position &pos, int alpha, int beta) {

if (depth == 0)

return pos.HPE();

pos.CreateDaughters();

if (pos.turn == WHITE) {

pos.eval = INT_MIN;

for (auto u : pos.daughters) {

pos.eval = max(pos.eval, Alphabeta(depth - 1, *u, alpha,

beta));

alpha = max(pos.eval, alpha);

if (alpha >= beta)

break;

}

}

else {

pos.eval = INT_MAX;

for (auto u : pos.daughters) {

pos.eval = min(pos.eval, Alphabeta(depth - 1, *u, alpha,

beta));

beta = min(pos.eval, beta);

if (beta <= alpha)

break;

}

}

return pos.eval;

}

The initial call of the α–β function would then be:

result = Alphabeta(depth, root node, INT_MIN, INT_MAX);

The functionality of the α–β function is best explained by some images. Note
that in the following search tree, the leaf nodes is the group of the four white nodes
at the bottom of the tree, the black nodes are generally referred to as the (root’s)
daughter nodes while the topmost white node is the root.
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Figure 2

// In Alphabeta(...) of the first

daughter node

for (auto u : daughters) {

// Alphabeta(...) call of the

first leaf node

pos.eval = min(pos.eval(MAX),

Alphabeta(0, *u,

alpha(MIN), beta(MAX)));

{...}

}

Figure 2 shows a search tree with depth 2 and two daughter nodes per node.
Note that even in this example with a small number of daughter nodes per node,
the majority (4/7) of the tree’s nodes are leaf nodes. The code to the right of figure
2 shows what is happening in the source code at the point in time that the figure
is showing.

Figure 3

// In Alphabeta(...) of the first

daughter node

for (auto u : daughters) {

// After receiving the

evaluation of the first

leaf node

beta = min(pos.eval(5),

beta(MAX));

-------------------------------------

// Alphabeta(...) call of the

second leaf node

pos.eval = min(pos.eval(5),

Alphabeta(0, *u,

alpha(MIN), beta(5)));

{...}

}

Figure 3 shows how beta is set to 5 in the first daughter node of the root. Now,
with the newly gained information, the α–β algorithm is used on the search tree’s
second tree node. Up to now, there hasn’t been any difference between α–β and
minimax except for how the different evaluations are stored.
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Figure 4

// In Alphabeta(...) of the root

node

for (auto u : daughters) {

// After receiving the

evaluation of the first

daughter node

alpha = max(pos.eval(-1),

alpha(MIN));

-------------------------------------

// Alphabeta(...) call of the

second daughter node

pos.eval = max(pos.eval(-1),

Alphabeta(1, *u, alpha(-1),

beta(MAX)));

{...}

}

Now, after the second leaf node has returned -1, the first daughter node of the
root node is set to -1 as the minimizing player (black) prefers the evaluation -1 over
5. Then, -1 is returned to the mother node and alpha is set to -1 as described in
the source code next to Figure 4. Now, as the cutoff comparison alpha >= beta

still isn’t true, the algorithm continues down to the second daughter node.

Figure 5

// In Alphabeta(...) of the second

daughter node

for (auto u : daughters)

// Alphabeta(...) call of the

third leaf node

pos.eval = min(pos.eval(MAX),

Alphabeta(0, *u, alpha(-1),

beta(MAX)));

/* now, pos.eval = -4 */

}

In Figure 5, the α–β algorithm is applied on the third daughter node and it
returns -4.
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Figure 6

// In Alphabeta(...) of the second

daughter node

for (auto u : daughters) {

// After receiving the

evaluation of the third

leaf node

beta = min(pos.eval(-4),

beta(MAX));

if (beta(-4) <= alpha(-1))

break; // alpha-beta

cutoff

}

return pos.eval(-4);

Since now, finally, alpha >= beta is true, the for loop through the remaining
leaf nodes is cut off and the current evaluation value (-4) is returned. When this
value is sent up to the mother node, the mother node determines which one (of -1
and -4) is the better value for white (the maximizing player). Since -1 > -4 is
true, the position’s evaluation is -1.

The reason why this cutoff can be made is because the fourth leaf node doesn’t
matter. There are two cases to distinguish from for this fourth leaf node but they
both give the same result: The moving player of the root node can safely discard
the fourth leaf node:

• eval > -4: Because black is the minimizing player, it’s her/his goal to get
an evaluation as small as possible. Since eval is definitly greater than -4,
the evaluation keeps its value of -4. And thus, because the white player
prefers -1 over -4, the fourth node with eval > -4 doesn’t influence the final
evaluation.

• eval <= -4: Now, the evaluation of this daughter node gets an even lower
value, so the white player can still ignore this evaluation and instead take the
path that leads to -1.

Therefore, whatever value eval has, it doesn’t affect the end result which leads
to the green path illustrated in figure 6.

In this example, the α–β algorithm is only faster than regular minimax — which
evaluates all leaf nodes — by a small margin. However, in a larger search tree with
many more daughter nodes per node (in chess up to 40), the α–β algorithm can be
very efficient: if n is the number of leaf nodes in a search tree and e(n) the number
of evaluated nodes by the α–β algorithm, then the following equation holds:

lim
n→∞

e(n) = lim
x→∞

√
x (3)

with e(n) approaching
√
x from above (Chess Programming Wiki, Alpha-Beta,

2018). This means that the relative number of evaluated nodes decreases with
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a greater node number and hence with greater depth, the algorithm’s efficiency
compared to minimax improves.

3.7 Improvements upon standard α–β

There are several ways to make α–β pruning faster. In Mockfish, I implemented the
following two ideas:

3.7.1 Sorting

What makes α–β pruning more efficient than minimax is the fact that some parts
of the tree can be pruned away because they aren’t impactful for the value of the
position. However, even α–β still evaluates lots of nodes that are actually obsolete.
The reason why is that often, the node that could cause a cutoff only comes after
many unnecessary nodes that neither change the evaluated score nor cause a cutoff.
To reduce the time spent evaluating useless nodes, it is possible to sort the tree’s
nodes before stepping through it with the α–β algorithm. The goal of this sorting
is to make the α–β algorithm evaluate nodes that cause cutoffs first.

This is done in the following way:

// Revised alphabeta algorithm

int Alphabeta(int depth, Position &pos, int alpha, int beta) {

{...}

if (pos.turn == WHITE) {

if (depth >= 3)

sort(daughters.begin(), daughters.end(),

[](Position *a, Position *b) { return a->HPE() >

b->HPE(); }

{...} // the code already shown in the standard alphabeta code

}

else {

if (depth >= 3)

sort(daughters.begin(), daughters.end(),

[](Position *a, Position *b) { return a->HPE() <

b->HPE(); }

{...}

}

{...}

}

Of course, this doesn’t place all cutoff-causing nodes at the start because the
heuristic evaluation is in no way exact enough — if that were the case, evaluating
a search tree wouldn’t be necessary. However, it does reduce the number of nodes
being unnecessarily evaluated by a lot and thus almost halved the evaluation time
in my case.

The reason why the listing above doesn’t sort the three lowest level of the tree
is because the benefit of sorting is eclipsed by the time it actually takes to sort the
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tree since the number of nodes in the (n + 1)th level of the tree generally contains
about 30 times as many nodes as all n levels before.

3.7.2 Multithreading

By using a C++11 feature called threads, it is possible to evaluate nodes of the same
tree at the same time. A thread is a function that is executed along with the main

thread in the same processor and that has access to the same resources and memory
addresses.

With minimax, multithreading would be a clear improvement — for n daughter
nodes of the root, the evaluation time would be cut down n-fold if every one of
these nodes had its own thread. However, the nature of α–β pruning makes this
more complicated: the entire concept of α–β pruning depends upon the fact that
daughter nodes are evaluated after one another so that the pruning can actually be
effective. If every thread had to treat its daughter node as a mother node itself, the
number of cutoffs would be reduced which, in turn, would reduce performance. To
circumvent this problem, I used a variable called cutoff val shared amongst all
threads that partly replaces alpha and beta.

The following listing contains the code used for multithreaded position evalua-
tion:

// Evaluation function within a thread

void Evaluate(vector<Position*> positions, int depth, int *cutoff_val) {

if (u->turn == WHITE) {

for (auto u : positions) {

*cutoff_val = max(*cutoff_val,

Alphabeta(depth, u, INT_MIN, *cutoff_val));

}

}

else {...}

}

// Evaluator for the mother node

int Position::Evaluate(int depth, int threads) {

vector<thread> thr;

thr.resize(threads);

CreateDaughters();

vector<vector<Position*>> positions;

positions.resize(threads);

for (int i = 0; i < daughters.size(); i++)

positions.at(i % threads).push_back(daughters.at(i));

int cutoff_val = ((!turn) ? INT_MAX : INT_MIN);
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for (int i = 0; i < threads; i++) {

thr.at(i) = thread(

Evaluate, positions.at(i), depth - 1, &cutoff_val);

}

{...} // Check if the threads are still running

if (turn == WHITE) {

sort(daughters.begin(), daughters.end(),

[](Position *a, Position *b) -> bool { return a->eval >

b->eval; });

}

else {...}

return daughters.front().eval;

}

The root evaluator First, the main evaluation function (int Position::Eva-

luate(...)) creates a two-dimensional dynamic array whose elements contain
position pointers. Such an array is used to increase functionality: if the number
of threads is lower than the number of daughter nodes of the position object, a
single thread has to take care of more than one node. Thus, every element of the
positions array contains an array of nodes. Because the arrays use the vector

template, dealing with empty arrays isn’t a problem, either if the number of threads
is larger than the number of nodes. positions is then filled with daughter nodes
so that every thread has as few nodes as possible.

Afterwards, the cutoff value is set either to the minimal value (for the maxi-
mizing player) or the maximal value (for the minimizing player). Note that those
values are equal to the values of the alpha and beta variables in the default α–β
function without threads. Then, the threads are run while in the main thread, a
loop checks for threads that are finished already and terminates them. Afterwards,
by sorting the daughter nodes according to their evaluation, the best value (for the
moving player in the root node) is determined and returned.

The thread function evaluator The first function evaluates an array of position
pointers. After every time using the α–β algorithm on one daughter node, the cutoff
value is modified like the alpha and beta variables in normal α–β. Since the cutoff
variable is shared amongst all threads, changing this variable also affects other α–β
calls across the entire program. In the end, multithreading resulted in increased
performance by about 200%6— comparable to my sorting algorithm.

6With a smaller number of threads, the benefit gained by this shared cutoff value is increased
because a single thread has to take care of more than one position. Meanwhile, with a large number
of threads, the benefit is reduced because it only has an impact on a small number of nodes.
However, a larger number of threads results in more positions being evaluated simultaneously —
it’s the goal to find the most efficient balance.
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4 Conclusion

I am proud to say that I have reached the goal I’d set myself on page 1. While
Mockfish doesn’t beat me on a regular basis, it won on several occasions. In order
to compare Mockfish’s strength with players all over the world, I created a https:

//www.chess.com/ account for my engine where its ELO score stabilized around
1300 when playing with the 10 minute time format and a depth of 6.

4.1 Statistical remarks

Interestingly, on this account, Mockfish had much better results with the black
pieces than with the white pieces: of the first 22 games that it took to reach ELO
1300, Mockfish had the scores 5-2-37with the white pieces and 10-0-2 with the black
pieces. Most probably, the reason for that is the opening: because Mockfish doesn’t
have access to an opening book like many modern chess engines like Stockfish do, it
tends to play quite unorthodox moves in the opening that may not be the best moves
but are still among the top 5 moves in most positions. This left the white players
quite confused because they couldn’t play out their favorite openings, so they made
concessions and mistakes that Mockfish could take advantage of8. However, with
the white pieces, the advantage of playing unorthodox openings turned into more
of a curse: players at the 1300 level know better how to take advantage of white’s
bad moves because often they cannot follow their favorite openings with the black
pieces9.

4.2 Personal remarks

Another interesting discovery I made was that Mockfish played in a quite simi-
lar style to my own: as opposed to the daring tactics and spectacular sacrifices
AlphaZero is known for, Mockfish — like me — prefers a slow, positional game
where both sides attempt to gain the positional advantage required to launch a
well-guarded attack. The reason for this playing style can be found in the HPE
tables: while a more aggressive player might have valued piece positioning more
than the material value of the pieces, my lookup tables rewarded a cautious pawn
structure and slow, positional play. Even though my own creation has defeated me,
it can never really leave its creator behind.

7The first number stands for the number of wins, the second for the number of draws and the
third for the number of losses. In chess, a win counts as 1 point, a draw as 0.5 and a loss as 0.
Thus, Mockfish reached 6/10 points with the white pieces and 10/12 points with the black pieces.

8One opening that illustrates this is the Scandinavian Defense. According to the Lichess
Opening Explorer, it only makes up about 2.2% of all openings after 1.e4, but it is in no way
bad per se and gives black good chances of equalizing if the opponent doesn’t know the theory
— which is exactly what happened when Mockfish played inexperienced players using this rare
opening, which is, coincidentally, also one of my favorites.

9This problem is made evident by the Center Game which Mockfish likes a lot. Reached by the
moves 1. e4 e5 2. d4, it is quite similar to the Scandinavian Defense, but three times rarer. It is
generally seen as inferior because it throws white’s advantage of the first move out of the window.
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