
CreateDaughters();
std::vector<std::vector<TreePosition*>> positions;
positions.resize(threads);
uint8_t i;for (i = 0; i < daughters_.size(); i++)
 positions.at(i % threads).push_back(daughters_.at(i));
int cutoff_val = ((!turn_) ? INT_MAX : INT_MIN);
for (i = 0; i < threads; i++){
 thr_obj.at(i) = std::thread(fish::Evaluate, positions.at(i), &thr_check.at(i),

 depth - 1, &cutoff_val);}

bool keep_checking = true;while (keep_checking){
 keep_checking = false; for (i = 0; i < threads; i++) {
 if (thr_check.at(i) != thr::CheckThread::FINISHED)

 keep_checking = true; }
}

for (i = 0; i < threads; i++) if (thr_obj.at(i).joinable()) thr_obj.at(i).join();
std::vector<std::pair<int, TreePosition*>> daughter_map;

for (auto u : daughters_){
 daughter_map.push_back(std::make_pair(u->eval_, u));

}
std::sort(daughter_map.begin(), daughter_map.end());
int max = (turn_ ? daughter_map.back() :
daughter_map.front()).first;

Programming a Chess AI

Matura Thesis by Oliver Graf
Kantonsschule Hohe Promenade Zürich

Supervised by Clemens Pohle and Stefan Müller
Informatics

2020

My Goals

Being a passionate chess player myself, I've
always wondered how computers miraculously
calculate the best moves and nowadays beat
human players with ease. Thus, I set as my goal
to code a chess AI from scratch that is able to
defeat me as a human player.

For my chess engine, I followed the following
guidelines:
● It has to be possible to understand my code

from an outsider's perspective.
● The chess programming concepts used should

be so close to an actual chess board as
possible without sacrificing performance.

● Anyone should be able to play against
Mockfish. To ensure that, I created a GUI
application which can be downloaded with the
QR code at the bottom right of this poster.

How does Mockfish work?

A chess engine needs several parts that have to
work together seamlessly. The most important
ones are the following:
● Square representation In order to store a

single square with only one byte, I gave every
bit in a byte a distinct role (see Table 1). That
makes it easy for the computer to read and
write information.

● Board representation After knowing how to
store a single square, there has to be a way to
store an entire board. There are several
different ways which have different strengths
and weaknesses (see Table 2).

● Move generation A chess engine also
requires a function which can create all legal
moves from a certain position. The shape of
this function heavily relies on the board
representation design.

● Heuristic evaluation Another vital function is
the one that estimates the value of a position,
whereas a positive number means that white
has an advantage while a negative number
means that black has an edge. It’s not possible
to create a perfect function – otherwise, chess
programming would be much easier – but it
has to be able to guess the value of a position
more or less accurately (see Image 1).

● Search tree Because the heuristic evaluator is
never precise enough, it makes sense to
postpone the evaluation to some moves after
the position that you actually want to evaluate.
This can be done using a so-called search tree
which contains all positions starting from the
root (the first positions) and then moves
downwards up to a certain level (see Image 2).

● α-ß pruning In order to find the best result
when analyzing a search tree, the best bet is
the so-called α-ß algorithm. Its advantage is
that it doesn’t have to evaluate all positions at
the bottom of the tree because some don’t
have an impact on the final result (see Image
2).

● Sorting The α-ß algorithm can be improved by
sorting the search tree’s positions before
applying the algorithm. This allows the
algorithm to evaluate fewer positions. In
Mockfish, I implemented sorting using the
heuristic evaluator.

● Multi-threading After creating the search tree
with only one level, Mockfish creates threads
that split up the workload of going through the
search tree.

1 Byte

Bits 7-6 Bit 5 Bit 4 Bit 3 Bits 2-0

Unused Color En Passant Flag Castling Flag Piece Type

always set to 00 0 = black, 1 = white 0 = no en passant right,
1 = en passant right

0 = no castling right,
1 = castling right

000 = empty, 001 = pawn,
010 = knight, etc.

Table 1 (Square Representation)

● 00 1 0 1 110 corresponds to a white king that can still castle
● 00 0 1 0 001 corresponds to a black pawn that can be captured en passant

Table 2 (Board Representation)
This type of board representation is called the 10×12 array. This type of list stores all squares in a
single file, but it adds some flagged squares around the central board. This allows a much more
efficient move generation algorithm because all moves that would overshoot the board just land
on a flagged square. Thus, the move generation algorithm doesn’t have to check whether the
target coordinates are legal: It just has to find out whether the target square is flagged.

Image 1 (Heuristic evaluation)
This image shows the graphical visualization of a so-called
lookup table. Mockfish’s evaluator uses 18 tables – one for
each piece type for each game phase (opening, middle game
and endgame). Depending on where each piece stands, it is
assigned a different value. All those values are then added up
as the placement coefficient of the evaluator’s result. The other
half of the result is made up by the material coefficient. This
one is only important if one player has more pieces than the
other.

This specific table shows the table for the pawn in the
endgame. This table doesn’t have values for the first and last
ranks because there, pawns cannot exist. This table
encourages pawns to move forward and capture towards the
center, where the evaluation’s results are generally better.

-3

≤-6-3

-35 (?)-6

Image 2 (α-ß algorithm)
In order to evaluate a search tree as shown in this image, the evaluator only
has to evaluate the positions at the bottom level. After evaluating the first two
ones, the value of the first position in which it’s black’s turn is already known:
Since the player with the black pieces wants a result as small as possible, -3 is
favorable for her/him. Then, after evaluating the third positions, the result is
already known without even looking at the fourth position.

Black would always decide for -6 or a lower result in the second half of the
search tree. As white already has a better alternative (-3), the fourth position
doesn’t have an impact on the result and can thus be omitted.

	Page 1

